## Доклады Авадемин Наук СССР 1949. Tom LXVII, № 1

# ГИДРОМЕХАНИКА

### к. к. шальнев

# кавитационная эрозия облучением звуковой волной

(Представлено академиком А. И. Некрасовым 4 V 1949)

Волновая кавитация может возникать в пучностях давления звуковой или ударной волны, проходящей через жидкость. В статье рассматривается эрозийное действие волновой кавитации, возбуждающейся непосредственно у закрытого конца никелевой трубки магнитострикционного вибратора (1). Эрозийное действие волновой кавитации

используется в технике для ускоренных испытаний материалов на сопротивление кавитационной эрозии, для чего применяется "метод вибрации", при котором испытуемый образец жестко закрепляется на конце никелевой трубки вибратора  $(^{2-4})$ . С целью избежать влияния вибрации на процесс эрозии и расширить ассортимент испытуемых материалов автором были поставлены опыты по изучению эрозийного действия волновой кавитации "методом облучения" \*. В отличие от метода вибрации при методе облучения образец испытуемого материала облучается звуковой волной в неподвижном состоянии.

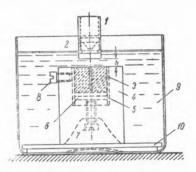



Рис. 1. Схема испытания образцов на кавитационную эрозию методом облучения

В описываемых опытах конец никелевой трубки 1 (рис. 1) вибратора заглушался стальной пробкой 2, не сменявшейся в продолжение всех опытов, а испытуемый образец З закреплялся в массивной, весом до 1,0 кг, державке 4, с помощью разрезного цилиндрического патрончика 5, торцевых подкладок 6 и нажимных винтов 7 и 8. Державка вместе с образцом помещалась на дне стеклянного сосуда с водой  $\bar{g}$ на резиновых подкладках 10 во избежание скольжения державки по дну сосуда.

Эрозийное действие волновой кавитации изучалось на образцах из следующих материалов: 1) катаный свинец, 2) катаная красная медь, 3) известняк (мягкий и твердый), 4) доломит. До и после облучения кавитацией образцы высушивались при температуре 100—120° и взвешивались. Образцы горных пород предварительно, до первой сушки, выдерживались в воде в течение предполагаемого времени облучения.

Для количественной оценки эрозийного действия волновой кавитации использовались величины: 1) объем эрозии или потеря объема материала образца в мм³ на 1 мм² эродированной поверхности за время

<sup>\*</sup> Первые опыты были поставлены автором в ВИГМ'е в 1939 г.

облучения т сек. или  $Q=10^3\,(G_1-G_2)\,/\,F$ ү мм³ / мм², где  $G_1$  и  $G_2-$  вес образца до и после облучения в г, F- площадь эродированной поверхности в мм² и ү — удельный вес материала образца; 2) скорость эрозии  $I=10^6\,(G_1-G_2)\,/\,60 au$  Fy  $\,\mu/\,{
m cek.}\,\,$ и 3) сопротивление материала эрозии

С внешней стороны, в отсутствие державки часть области кавита $i = 1/I \text{ сек.} / \mu.$ ции, прилегающей к торцу никелевой трубки, имеет форму обращен-

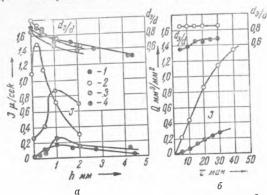



Рис. 2. Ваняние h на скорость (a) и  $\tau$  на объем  $(\delta)$  эрозии. I- свинец, 2- известняк мягкий, 3 — известняк твердый, 4 — доломит

ного вершиной вниз конуса, белесоватого на темном фоне, высотою около 5—6 мм. От вершины этого, более плотного "облачка" кавита-

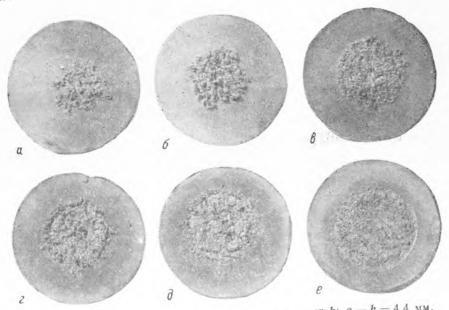



Рис. 3. Кавитационная эрозия свинца при различных h: a-h=4.4 мм, b-h=2.7, b-h=1.7, b-h=1.0, b-h=0.5, b-h=0.0 мм

ции отходит книзу расходящийся и редеющий по мере удаления от

трубки поток разрушающихся пузырьков кавитации.

Помещая образец на разных расстояниях h от торца трубки (рис. 1), можно выяснить степень эрозийного воздействия различных участков области кавитации и зависимость эрозии от расстояния h. На расстоянии  $h=7\div 10$  мм эрозийное действие не обнаруживается ни на свинце, ни на известковых образцах. Первые заметные следы эрозии обнаруживаются при  $h = 4 \div 6$  мм (рис. 2, a).

С уменьшением h увеличивается площадь эродируемой поверхности, как это видно из кривой  $d_{\theta}/d = f(h)$ , где d- диаметр пробки на никелевой трубке и  $d_{\theta}$ — средний диаметр эродированной поверхности. Скорость эрозии I растет только до некоторого значения  $h_{M}$ , равного для 3 из 4 испытанных материалов  $h_{M}=1.0$  мм. Для мягкого известняка, наиболее мягкого из испытанных материалов, с малым сопротивлением эрозии,  $h_{M}=0.5$  мм. Пониженное значение  $h_{M}$  объясняется несоответствием  $h_{M}$  измеренного в начале опыта, значению  $h_{M}$  при ко-

тором фактически происходил отыт, вследствие быстрой эрозии и быстрого понижения эродируемой поверхности образца. По этой же причине I образцов известняков при  $h\!=\!0$  еще велико, в то время как для образца

свинца  $I \approx 0$ .

Характерной особенностью максимальной скорости эрозии является то, что она происходит при  $h_{\rm M} \approx \delta$ , где  $\delta$  — диаметр резонирующего воздушного пузырька ( $^5$ ), определяемый по формуле ( $^6$ ):  $\delta = 0.66 f$ , где f — основная частота колебаний никелевой трубки, f = 8000 пер. /сек.

Представление об эродированной поверхности при разных h дают фотоснимки рис. 3.

Влияние продолжительности воздействия волновой кавитации  $\tau$  на развитие эрозии испытывалось на образцах известняка и свинца (рис. 2,  $\delta$ ) при h=0,5 и h=2,0 мм. В отличие от свинца, имеющего в начале облучения несколько большее сопротивление эрозии  $i=1:(dQ\mid d\tau)$ , аналогично тому, как это происходит при испытании на кавитационную эрозию в потоке жидкости, образцы известняка показывают в начале  $\tau$  постоянную сопротивляемость эрозии.

Сравнение скоростей кавитационной эрозии, полученных методом вибрации (рис. 4, a) и методом облучения (рис. 4,  $\delta$ ), было выполнено только на двух образцах красной меди, причем опыт с облучением был поставлен при h = 0.5 мм, т. е. при  $h < h_{\rm M}$ . При одном



a



Рис. 4. Внешний вид эродированной поверхности красной меди, полученной: а — методом вибрации, б — методом облучения

и том же  $\tau=60$  мин. скорость эрозии при облучении оказалась в 4 раза меньше скорости эрозии при вибрации. Следует думать, что при h=1,0 мм эрозия облучением будет в два раза меньше, чем при методе вибрации.

С внешней стороны картина эродированной поверхности металлов сходна и при методе облучения и при испытании в потоке жидкости. На свинцовых образцах эродированная поверхность ноздревато-губчатого строения и приподнята над первоначальным ее положением. Отдельные каверны имеют форму кратерообразных лунок. В образцах горных пород эродированная поверхность понижена по сравнению с первоначальным ее положением. Ноздреватость эродированной поверхности известняка, как показало их рассматривание при опиловке, распространяется на глубину до  $5-6\,$  мм. На нижней поверхности некоторых свинцовых образцов, соприкасавшейся с бумажной подкладкой, в опытах при  $h \geqslant 1,0\,$  мм были обнаружены отдельные мелкие каверны, подобные булавочным проколам. Возможно, что причиной их является или пробивное действие кавитации или эрозийное действие волновой кавитации между нижней поверхностью образца и бумажной проклад-

кой. Нижняя поверхность пробки, возбуждавшей кавитацию, несмотря на 12 час. работы имела вид очень слабо эродированной поверхности, покрытой как бы оксидной пленкой.

### Выводы

1. Степень эрозийного действия волновой кавитации зависит от взаимного положения поверхности образца и поверхности, возбуждающей волновую кавитацию.

2. При соприкосновении твердого тела с разрушающимися пузырь-

ками кавитации эрозия не возникает.

3. Причиною эрозии не может являться соударение жидкости и твердого тела, как это можно было бы объяснить при методе виб-

рации (7).

4. Эрозийное действие кавитации методом облучения может быть использовано для испытания материалов на сопротивление кавитационной эрозии в тех случаях, когда требуется: а) исключить в опытах с эрозией неопределенность совместного действия в материале напряжений от кавитации и от вибрации; б) испытывать материалы, жесткое крепление которых к трубке затруднительно; в) испытывать образцы большого габарита и детали гидромашин.

Всесоюзный научно-исследовательский институт гидромашиностроения

Поступило 13 IV 1949

### ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> Н. М. Иванов, Тр. ВИГМ, в. 11 (1940). <sup>2</sup> L. Kerr, TASME, 59, № 5 (1937). <sup>3</sup> Т. К. Ряжская, Тр. ЦНИИ суд. пр., в. 3 (1941). <sup>4</sup> N. Nowotny, VDI, 86, No. 17/18 (1942). <sup>5</sup> F. D. Smith, Phil. Mag., 19, No. 130 (1935). <sup>6</sup> E. Меует и. К. Ташш, Ак. Z., 4, No. 3 (1939). <sup>7</sup> М. Корнфельд и Л. Суворов, J. Physics, 8, No. 3 (1944).