МАТЕМАТИКА

А. И. МАЛЬЦЕВ

О БЕСКОНЕЧНЫХ РАЗРЕШИМЫХ ГРУППАХ

(Представлено академиком А. Н. Колмогоровым 5 V 1949)

В настоящей заметке рассматриваются свойства разрешимых групп, т. е. групп, имеющих конечный нормальный ряд с коммутативными факторами. Общие свойства одного класса бесконечных непериодических разрешимых групп были изучены К. А. Гиршем (¹). Ряд более тонких признаков, характеризующих отдельные классы периодических разрешимых групп, был получен в работах С. Н. Черникова (²), О. Ю. Шмидта (³), И. Д. Адо (⁴) и др. Мы указываем более широкие классы разрешимых групп и рассматриваем их свойства, некоторые из которых оказываются аналогичными свойствам периодических групп, рассматривавшихся в цитированных выше работах.

Разрешимые группы естественно классифицировать по свойствам фактор-групп их разрешимых нормальных рядов. Среди простейших коммутативных групп уже встречались следующие: A_1 — коммутативные группы, фактор-группы которых по их периодической части имеют конечный ранг; A_2 — группы типа A_1 , периодическая часть которых имеет конечный ранг, т. е. распадается в прямое произведение конечного числа циклических и локально-циклических подгрупп; A_3 — группы типа A_1 , периодическая часть которых разлагается в прямое произведение конечного числа циклических и примарных локально-циклических подгрупп; A_4 — группы типа A_1 , периодическая часть которых конечна; A_5 — абелевы группы с конечным числом образующих.

Соответственно этому условимся разрешимую группу называть группой типа A_i , если она допускает конечный нормальный ряд, все фактор-группы которого являются абелевыми группами типа A_i ($i=1,\ 2,\ 3,\ 4,\ 5$). В работе Гирша (1) разрешимые группы типа A_5

называются S-группами.

Подгруппы разрешимых A_i -групп, а также прямые произведения разрешимых групп типа A_i являются, очевидно, разрешимыми группами типа A_i ($i=1,\ldots,5$). Фактор-группы разрешимых A_i -групп для i=1,2,5 являются разрешимыми A_i -группами. Если же i=3,4, то можно лишь утверждать, что фактор-группа разрешимой A_i -группы по периодическому нормальному делителю есть A_i -группа. Из теоремы об изоморфных уплотнениях следует, что сумма приведенных рангов* факторов разрешимой нормальной цепочки A_i -группы не зависит от выбора цепочки.

^{*} Приведенный ранг аддитивно записываемой абелевой группы ® равен максимальному числу линейно независимых элементов в фактор-группе ® по ее периодической части.

Замечая, что всякая группа содержит единственный максимальный

периодический нормальный делитель, мы имеем:

Tе орема 1. Фактор-группа разрешимой A_i -группы по ее максимальному периодическому нормальному делителю есть разрешимая группа, обладающая цепочкой нормальных делителей с абелевыми факторами типа A_4 .

В определении разрешимых A_i -групп рассматривались нормальные цепочки подгрупп. Из теоремы 1 следует, что в этом определении нормальные цепочки могут быть заменены главными, т. е. что всякая разрешимая A_i -группа содержит цепочку нормальных делителей, фактор-группы которой суть абелевы типа A_i ($i=1,\ldots,5$).

Доказательства дальнейших свойств, здесь не указываемые,

существенно опираются на следующую теорему:

Теорема 2. Разрешимая группа матриц с элементами из алгебраически замкнутого поля содержит подгруппу конечного индекса, матрицы которой приводимы к совместной треугольной форме.

Как обычно, конечную или бесконечную группу ® условимся называть нильпотентной, если нижний центральный ряд ® заканчивается

единицей через конечное число шагов.

Tеорема 3. Каждая разрешимая группа типа A_3 содержит подгруппу конечного индекса, коммутант которой нильпотентен.

Известно, что если какая-либо группа имеет максимальный нильпотентный нормальный делитель, то он единственен. Следующие теоремы ведут к установлению некоторого достаточного признака существования максимального нильпотентного нормального делителя.

Tеорема 4. Если все абелевы подгруппы локально нильпотентной группы $\mathfrak G$ имеют тип A_1 , то фактор-группа группы $\mathfrak G$ по ее максимальному периодическому нормальному делителю является нильпотентной A_4 -группой. Локально нильпотентная раз-

решимая группа типа A_4 является нильпотентной.

Из теоремы 4 и результатов С. Н. Черникова (2) вытекает, что локально нильпотентные группы, все абелевы подгруппы которых имеют тип A_3 , являются разрешимыми. Далее, если каждое конечное множество элементов группы $\mathfrak G$ лежит внутри некоторого ее нильпотентного нормального делителя и все абелевы подгруппы $\mathfrak G$ имеют тип A_3 , то $\mathfrak G$ —нильпотентная A_3 -группа.

Из последнего утверждения непосредственно следует

Теорема 5. Если все абелевы подгруппы произвольной группы \mathfrak{G} имеют тип A_3 , то \mathfrak{G} обладает максимальным нильпотентным нормальным делителем.

В частности, максимальным нильпотентным нормальным делителем $\mathfrak R$ обладает каждая разрешимая A_3 -группа $\mathfrak G$. Из теоремы 3 видно, что в этом случае фактор-группа $\mathfrak G/\mathfrak R$ является конечным расшире-

нием своей абелевой подгруппы.

Аналогичное положение имеет место и для максимальных разрешимых делителей. Очевидно, каждая группа может содержать не более одного такого делителя. Далее, если всякое конечное множество элементов группы $\mathfrak G$ содержится в некотором разрешимом нормальном делителе $\mathfrak G$ и все разрешимые подгруппы $\mathfrak G$ имеют тип A_3 , то группа $\mathfrak G$ разрешима.

Отсюда следует

В основу классификации разрешимых групп выше была положена классификация факторов разрешимых нормальных рядов этих групп. Теорема 4 показывает, что иногда возможно получить те же клас-

сы, рассматривая непосредственно абелевы подгруппы разрешимых групп.

Имеет место также

Tеорема 7. Если все абелевы подгруппы разрешимой группы имеют тип A_5 , то и сама группа имеет тип A_5 .

В доказательстве этой теоремы используется

 Π емма. Всякая разрешимая подгруппа группы автоморфизмов абелевой группы с конечным числом образующих имеет тип A_5 .

Из теоремы 7 и замечания, приведенного перед теоремой 6, вытекает, что если абелевы подгруппы некоторой группы $\mathfrak G$ имеют тип A_5 и каждое конечное множество элементов $\mathfrak G$ содержится внутри ее подходящего разрешимого нормального делителя, то группа $\mathfrak G$ разрешима.

Обращаясь к рассмотрению периодических подгрупп разрешимых групп типа A_4 , легко заметить, что эти подгруппы будут конечны и что силовские подгруппы, принадлежащие одному и тому же простому числу, могут быть несопряженными и даже неизоморфными.

Поэтому следующее предложение может представлять интерес: Теорема 8. Периодические подгруппы разрешимой группы типа A_4 распадаются в конечное число классов сопряженных.

Доказательство опирается на следующую лемму:

Пеммя. Если группа $\mathfrak G$ содержит локально-нильпотентный нормальный делитель $\mathfrak H$ без элементов конечного порядка, в котором всякое уравнение $x^n=h$ $(n\neq 0,h\in \mathfrak H)$ имеет решение, и если фактор-группа $\mathfrak G/\mathfrak H$ счетна и локально конечна, то для каждой конечной подгруппы $\mathfrak H$ в группе $\mathfrak G$ существует содержащая $\mathfrak H$ дополнительная подгруппа $\mathfrak H$ со свойствами $\mathfrak H \cap \mathfrak H = 1$, $\mathfrak H \circ \mathfrak H = \mathfrak G$; если фактор-группа $\mathfrak G/\mathfrak H$ конечна, то все дополнительные подгруппы сопряжены между собой.

Для вывода леммы достаточно применить известные условия рас-

пада расширения группы.

Поступило 5 V 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ K. A. Hirsch, Proc. London Math. Soc., 11, S. 44, 53, 336 (1938); 49, 184 (1946). ² С. Н. Черников, ДАН, 63, 11 (1948). ³ О. Ю. Шмидт, Матем. сб., 17, 145 (1945). ⁴ И. Д. Адо, ДАН, 54, 475 (1946).