а. С. КРОНРОД

О ЛИНЕЙНОЙ И ПЛОСКОЙ ВАРИАЦИЯХ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

(Представлено академиком С. Л. Соболевым 5 V 1949)

I. Линейная вариация. На протяжении всей заметки, кроме 11° и 18°, мы будем рассматривать непрерывные функции $f(\eta)$, заданные в квадрате или на двумерной сфере. Область задания обозначается J.

1°. Множеством уровня E, (или уровнем t) функции $f(\eta)$ называет-

ся множество всех точек $\xi \subset J$, где $f(\xi) = t$.

Компонента K множества уровня E_{t} называется регулярной, если она разделяет J на две области J_{1} и J_{2} . Если, кроме того, K есть общая граница J_{1} и J_{2} , то K называется правильной компонентой.

Неразделяющая компонента K множества уровня E_t называется: а) компонентой концентрической особенности, если, какова бы ни была окрестность U компоненты K, найдется компонента K' того же уровня, лежащая внутри U и отделяющая K от CU; b) компонентой полуэкстремума, если существует континуум R, пересекающийся с K, не лежащий целиком в K и не пересекающийся с E_t —K.

При этом: а) если $f(\eta) > t$ при $\eta \subset R$, то K — компонента полуменимума; β) если $f(\eta) < t$ при $\eta \subset R$, то K — компонента полума-

ксимума.

Теорема 1. Всякая неразделяющая компонента есть: 1) либо компонента концентрической особенности, 2) либо компонента полумаксимума, 3) либо компонента полуминимума, причем случаи 1)—3) попарно несовместны.

 2° . Пусть ξ — фиксированная точка, $K \not \supset \xi$ — регулярная компонента

уровня t и $J_1 \supset \xi$ и J_2 — области, на которые K разделяет J.

Тогда: а) внутренней характеристикой K^{\bullet} называется замкнутое множество J_1+K — неразделяющая компонента уровня t функции $f^{\bullet}(\eta); f^{\bullet}(\eta) = f(\eta)$ при $\eta \subset J_2, f^{\bullet}(\eta) = t$ при $\eta \subset J_1;$ b) внешней характеристикой $K^{\bullet\bullet}$ называется замкнутое множество $K+J_2$ — неразделяющая компонента уровня t функции $f^{\bullet\bullet}(\eta); f^{\bullet\bullet}(\eta) = f(\eta)$ при $\eta \subset J_1, f^{\bullet\bullet}(\eta) = t$ при $\eta \subset J_2$.

Теорема 2. Пусть $f(\eta)$ — непрерывная функция в области J. Тогда: а) среди множеств уровня E_t лишь не более чем счетное число содержит точки экстремума и регулярные неправильные компоненты; b) среди E_t не более чем счетное число их содержит компоненты, делящие J более чем на две части; c) среди всех прочих E_t всякое E_t содержит либо одни только регулярные компоненты, либо, если содержит хотя бы одну нерегулярную ком-

поненту, то содержит и бесконечное число регулярных; d) неразделяющие компоненты и характеристики регулярных компонент делятся на типы согласно теореме 1.

3°. Регулярная компонента $K \not\supset \xi$ называется компонентой роста (убывания) относительно ξ , если ее внутренняя характеристика есть компонента полуминимума функции $f^*(\eta)$, а внешняя — компонента полумаксимума функции $f^{**}(\eta)$ (соотв., внутренняя характеристика — компонента полумаксимума, а внешняя — полуминимума).

Непрерывная функция $f(\eta)$ называется: 1) монотонно возрастающей (относительно ξ), если каждая регулярная компонента $K \not \supset \xi$ каждого ее множества уровня есть компонента роста; 2) монотонно убывающей (относительно ξ), если — $f(\eta)$ монотонно возрастающая (относительно ξ) функция.

Если $f(\eta)$ — непрерывная монотонно возрастающая (убывающая) относительно точки ξ функция, то для каждой ее регулярной компоненты внутренняя характеристика есть компонента минимума (соотв., максимума), а не только полуминимума (соотв. полумаксимума).

Теорема 3. Необходимым и достаточным условием монотонности функции $f(\eta)$ является:

- А. Связность лебеговского множества $\underline{M}_{t_0} = \sum_{t < t_0} E_t$ для любого t_0 в случае монотонного возрастания.
- В. Связность лебеговского множества $\overline{M}_{t_0} = \sum_{t>t_0} E_t$ для любого t_0 в случае монотонного убывания.
- 4° . Обозначим через $\xi \Phi^{s\pm}(t)$ (соотв. $\xi \Phi^{z\pm}(t)$) число компонент уровня t, разделяющих (соотв. не разделяющих) плоскость, разделяющих точки ξ и ζ и не являющихся компонентами убывания (роста) относительно точки ξ . Функции $\xi \Phi^{s,z\pm}(t)$ оказываются измеримыми функциями t.

Положим
$$\xi V^{s(z)\pm}(F) = \int_{-\infty}^{+\infty} \xi \Phi^{s(z)\pm}(t) dt$$
. Величина $\xi V^{s+}(F)$ назы-

вается положительной внутренней (соотв. V^{s-} , V^{z+} и V^{z-} — отрицательной внутренней, положительной и отрицательной граничными) вариацией функции $F(\eta)$ от точки ξ до точки ζ . $\xi V^{s}(F) = \xi V^{s+}(F) + \xi V^{s-}(F)$ называется полной внутренней, а $\xi V^{z}(F) = \xi V^{z+}(F) + \xi V^{z-}(F)$ — полной граничной вариациями от ξ до ζ . $\xi V^{+}(F) = \xi V^{s+}(F) + \xi V^{z-}(F) + \xi V^{z-}(F)$ — отрицательная вариации от ξ до ζ .

Опуская в определении функции $\xi \Phi^{s,\,z\pm}(t)$ условие на компоненту K разделять ξ и ζ , а в обозначениях — индекс ζ , мы получаем вариации $\xi^{V^s\pm}(F)$, $\xi^{V^z\pm}(F)$, $V^s(F)=\xi V^{s+}(F)+\xi V^{s-}(F)$; $V^z(F)=\xi V^{z+}(F)+\xi V^{z-}(F)$ и $\xi^{V^\pm}(F)=\xi^{V^s\pm}(F)+\xi V^{z\pm}(F)$, называемые, соответственно, внутренней и граничной, положительной или отрицательной вариациями. Наконец, $V(F)=\xi^{V^+}(F)+\xi^{V^-}(F)$ называется просто линейной вариацией функции $F(\eta)$.

5°. Все введенные вариации полунепрерывны сверху, т. е. коль скоро функции $F_n(\eta)$ равномерно сходятся к $F(\eta)$, то $\xi V^*(F) \leqslant \lim_{n \to \infty} \xi V^*(F_n)$ и $\xi V^*(F) \leqslant \lim_{n \to \infty} \xi V^*(F_n)$.

6°. Если $J=J_1+J_2$, где J_1 и J_2 — замкнутые области, и $F_1(\eta)$, $F_2(\eta)$ функции, постоянные: $F_1(\eta) - B J_2$, а $F_2(\eta) - B J_1$, то $\xi V^{a+}(F_1 + F_2) =$ $= \xi V^{s+}(F_1) + \xi V^{s+}(F_2)$. Аналогичное свойство имеет место и для всех остальных вариаций.

 7° . Если τ — гомеоморфное преобразование J в себя и $f^{*}[\tau(\eta)] = f(\eta)$, то соответствующие вариации функции $f^*(\eta)$ и $f(\eta)$ (относительно точек ξ и ζ и $\tau(\xi)$ и $\tau(\zeta)$, соответственно) совпадают. Для любых точек ξ_1 и ξ_2 границы J, кроме того, $\xi_1 V^{\theta\,\pm}(f) = \xi_2 V^{\theta\,\pm}(f)$. Поэтому положительная и отрицательная внутренние (относительно точек границы), а также граничная (в случае, когда J- квадрат) вариации $_{\rm F}V^{\rm e}\,^{\pm}(f)$ и $_{\rm E}V^{\rm c}(f)$ инвариантны относительно гомеоморфных преобразований Ј в себя. Это последнее свойство — инвариантность вариации $V\left(F
ight)$ относительно гомеоморфизмов J в себя— вместе со свойствами 5° и 6° определяет неотрицательный функционал $V\left(F\right)$ однозначно с точностью до трех констант: $A^{\pm} = V \ (\pm \varphi)$ и $A^0 = V \ (\theta)$, где $\varphi \ (\eta) = \rho \ (\eta, C)$, C — граница J и $\theta(x, y) = x$.

 8° . Рассмотрим вариации ${}^{7}_{\xi}V^{\circ\circ}(F)$ как функции точки η . Тогда $\varphi^+(\eta) = {}^{\eta}V^+(F)$ и $\varphi^-(\eta) = {}^{\eta}V^-(F)$ суть монотонно возрастающие функ-

ции в смысле 3° относительно точки §.

Теорема 4. Если $f(\eta) - \phi$ ункция ограниченной линейной вариации и ξ — произвольная точка, то $f(\eta)$ допускает представление $f(\eta) = \varphi(\eta) - \psi(\eta)$, где $\varphi(\eta)$ и $\psi(\eta)$ — непрерывные монотонно возрастающие (относительно ξ) функции. Среди всех таких представлений представление $f(\eta) = \frac{\eta}{\xi} V^+(f) - \frac{\eta}{\xi} V^-(f) + f(\xi)$ минимально, m.e.коль скоро $\varphi(\xi) = f(\xi)$, то $\varphi(\eta) \geqslant f(\xi) + \frac{\eta}{\xi}V^+(f)$ и $\psi(\eta) \geqslant \frac{\eta}{\xi}V^-(f)$ для всех точек $\eta \subset J$.

9°. Функция $f(\eta)$ осуществляет непрерывное разложение области задания Ј. Соответствующее пространство компонент есть локально связный одномерный континуум без циклов, не гомологичных нулю,одномерное дерево T_f функции $f(\eta)$. Каждые две точки такого континуума соединимы единственной простой дугой. Концы T_f соответствуют не разделяющим, а точки ветвления — разделяющим Ј более

чем на две области компонентам множеств уровня. Пусть $f^*(l)$ — функция, заданная на T_f так: $f^*[\tau(K)] = t$, если $\mathcal{K} \subset E_{\tau}$ и τ — отображение J в T_{τ} , задаваемое функцией $f(\eta)$. Вариация ${}^{n}_{\xi}V\left(f\right)$ совпадает с вариацией функции $f^{*}\left(l\right)$ по единственной простой дуге, соединяющей $\tau(\xi)$ и $\tau(\eta)$, линейная, вариация V(f) совпадает с суммарной вариацией $f^*(l)$ по всем "ветвям" дерева T_l . Эта аналогия может быть продолжена.

 10° . Ограниченность линейной вариации функции $f(\eta)$ не следует из непрерывной дифференцируемости $f(\eta)$, но следует из подчинения

частных производных условию Липшица. 11° . Результаты $1^{\circ} - 9^{\circ}$ без изменения переносятся на случай, когда J-n-мерный куб или n-мерная сфера (кроме второй половины 7°). В 10° следует требовать удовлетворения условия Липшица для n-1-х частных производных.

II. Плоская вариация.

12°. Пусть $\nu(E)$ — одномерная мера Хаусдорфа (1) множества E. Пусть $f(\eta)$ — непрерывная функция, заданная на J, и $G \subset J$ — открытое множество. Положим $\nu\left(G,\,t\right)=\nu\left(E_{t}\,\cap\,G\right)$. Определим плоскую вариацию $W(\mathcal{F},G)$ функции $f(\eta)$ на открытом множестве G так:

$$W(F,G) = \int_{-\infty}^{+\infty} v(G,t) dt$$
. Пусть M есть B -множество, положим

 $W(F, M) = \inf_{G \supset M} W(F, G)$, где inf берется по всем открытым множе-

ствам, содержащим М.

Теорема 5. Для почти всех t функция v(G,t) совпадает c суммой длин правильных в смысле 1° компонент уровня t. При этом длина понимается в обычном смысле.

Теорема 6. Вариация W (F, M) как функция В-множества М

абсолютно аддитивна.

13°. Ограниченность плоской вариации W(F) < W(F,J) эквивалентна ограниченности вариации Тонелли.

Теорема 7. У функции ограниченной плоской вариации почти всюду существует асимптотический полный дифференциал.

 14° . Если W(F, M) как функция множества абсолютно непрерывна,

то функция $F(\eta)$ называется абсолютно непрерывной.

Теорема 8. Если функция $F(\eta)$ абсолютно непрерывна, то $W(F,G)=\iint_G |\operatorname{grad}_A F(\eta)| dS$, где $\operatorname{grad}_A F(\eta)$ — асимптотический градиент.

Теорема 9. Если у функции $F(\eta)$ существует в каждой точке полный дифференциал и $\iint_{J} |\operatorname{grad} F(\eta)| dS < +\infty$, то функция $F(\eta)$ абсолютно непрерывна.

15°. Теорема 10. Если $F(\eta) = F_1(\eta) + F_2(\eta)$, где $F_1(\eta)$ и $F_2(\eta)$ — непрерывные функции, то

$$W(F) \leqslant W(F_1) + W(F_2).$$

16°. Плоская вариация W(F) инвариантна относительно перемены осей координат и вообще движения в плоскости J. Далее, очевидно, W(F + const) = W(F), W(const F) = |const | W(F).

Для плоской вариации имеет место свойство пункта 6° . Наконец, если G — открытое множество и последовательность непрерывных функций $\{F_n(\eta)\}$ равномерно сходится к $F(\eta)$, то

$$W(F, G) \leqslant \lim_{n \to \infty} W(F_n G).$$

 17° . Ни ограниченность плоской, ни ограниченность линейной вариации порознь не влечет обязательного существования у функции $F(\eta)$ полного дифференциала. Справедлива, однако, теорема 11.

Теорема 11. Если у непрерывной функции $F(\eta)$, заданной в квадрате или на двумерной сфере J, плоская и линейная вариации одновременно ограничены, то у $F(\eta)$ почти всюду (в смысле

плоской меры Лебега) существует полный дифференциал.

 18° . Результаты 10° — 16° переносятся на n-мерный случай с очевидной заменой одномерной меры Хаусдорфа на n-1-мерную. Для обобщения теоремы 10 нужно ввести в случае n переменных n различных вариаций — n-мерных вариаций функции n переменных и потребовать их одновременной ограниченности.

Математический институт Московского государственного университета им. М. В. Ломоносова Поступило 19 IV 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ F. Hausdorf, Math. Ann., 79 (1919).