МАТЕМАТИКА

м. м. постников

гомологические инварианты непрерывных ОТОБРАЖЕНИЙ

(Представлено академиком И.Г. Петровским 16 III 1949)

При классификации отображений трехмерного комплекса в двухмерную сферу Л. С. Понтрягин (1) использовал некоторые цепи комплекса, определенные непрерывными отображеннями этого комплекса в сферу. Это определение было перенесено Эйленбергом (2) на случай отображений произвольного комплекса в связное топологическое пространство, удовлетворяющее определенным требованиям (так называемой простоты в нужных размерностях). Однако для изучения отображений в произвольные пространства или хотя бы в полиэдры необходимо избавиться от этих требований. Этой цели и посвящена настоящая заметка. Построенные здесь цепи определены не над одной группой, а над так называемой системой локальных групп (3). Поэтому вначале я вкратце с некоторыми добавлениями изложу теорию гомологий с локальными коэффициентами.

А. Пусть X — связное (с помощью путей) топологическое пространство. Через α_z^x , β_z^x , . . . мы обозначим пути, соединяющие точки $z, x \in X$. Пусть каждой точке $x \in X$ отнесена абелева группа G_x и пусть каждому пути α_z^x отнесен изоморфизм α_z^x группы G_x на группу G_z , подчиненный следующим условиям: 1) если пути α_z^x и β_z^x гомотопны, то соответствующие изоморфизмы α_z^x и β_z^x тождественны; 2) произведению $\alpha_z^{y}\alpha_v^{x}$ путей соответствует произведение изоморфизмов: $\alpha_z^y \alpha_y^x = \alpha_z^y \alpha_y^x$. Систему $\mathfrak{G} = \{G_x, \alpha_z^x\}$ групп G_x и изоморфизмов α_z^x назовем системой локальных групп пространства X.

Пусть в X даны две системы $\mathfrak G$ и $\mathfrak G' = \{G_x', \tilde{\alpha}_z'^x\}$ локальных групп и пусть для каждого $x \in X$ задан такой гомоморфизм α_x группы G_x в группу G_{x}' , что $\alpha_{y} \tilde{\alpha}_{y}^{x} = \tilde{\alpha}_{y}^{'x} \alpha_{x}$. Систему α всех гомоморфизмов α_{x} назовем гомоморфизмом системы в систему в'. Если все а, являются изоморфиз-

мами, то гомоморфизм α также назовем изоморфизмом. Б. Пусть X и Y — связные топологические пространства и пусть f — непрерывное отображение пространства X в пространство Y. Пусть в пространстве Y дана система локальных групп $\mathfrak{G} = \{G_y, \alpha_z^y\}$. Каждой точке $x \in X$ отнесем группу $G_{f(x)}$. Каждому пути α_z^x пространства X соответствует путь $f(\alpha_z^x)$, соединяющий точки f(z), $f(x) \in Y$. Поставим в соответствие пути α_z^x изоморфизм $f(\alpha_z^x)$ группы $G_{f(x)}$ на группу $G_{f(z)}$. Таким образом, мы в пространстве X получили систему

 $f^*\mathfrak{G} = \{G_{f(x)}, f(\alpha_z)\}.$ Пусть два отображения f и g пространства X в пространство Yгомотопны. Гомотопия, их связывающая, однозначно определяет естественное изоморфное отображение системы $f^* \mathfrak{G}$ на систему $g^* \mathfrak{G}$.

В. Пусть топологическое пространство X разбито на клетки, образующие клеточный комплекс K. Предположим, что замыкание каждой клетки односвязно. q-мерные ориентированные клетки будем обозначать через σ^q , коэффициенты инцидентности через $[\sigma^{q+1}:\sigma^q]$. В замыкании клетки σ выберем точку $\chi(\sigma)$, называемую представителем клетки σ . Символы $G_{\sigma}(\sigma)$, $\alpha_{x}^{\chi'(\sigma)}$, $\alpha_{x}^{\chi'(\sigma)}$, сократим до G_{σ} , α_{τ}^{σ} . Пусть клетка τ является гранью клетки σ . В замыкании σ клетки σ выберем какой-нибудь путь α_{σ}^{τ} . Изоморфизм α_{σ}^{τ} не зависит от пути α_{σ}^{τ} , так как замыкание клетки σ односвязно. q-мерной цепью f^q над системой $\mathfrak{G} = \{G_x, \alpha_z^{\chi}\}$ назовем нечетную функцию ориентированной q-мерной клетки, относящую клетке σ^q элемент $f^q(\sigma^q)$ группы \mathfrak{G}_{σ}^q . Положим

$$abla_{\mathbb{G}}f^{q}\left(\mathbf{\sigma}^{q+1}
ight)=\sum_{\sigma^{oldsymbol{q}}\in K}\left[\mathbf{\sigma}^{q+1}:\sigma^{q}
ight]\widetilde{\mathbf{a}}_{\sigma^{oldsymbol{q}}+1}^{\sigma^{q}}(f^{q}\left(\sigma^{q}
ight)).$$

Легко видеть, что $\nabla_{\mathfrak{G}} \nabla_{\mathfrak{G}} = 0$, так что можно обычным путем построить теорию $\nabla_{\mathfrak{G}}$ -гомологий.

Любому изоморфизму а систем в и в' следующим образом соответствует изоморфизм, также обозначаемый через а, групп цепей над системами в и в':

$$(\alpha f^q)(\sigma^q) = \alpha_{\sigma^q}(f^q(\sigma^q)).$$

Легко видеть, что $\nabla_{\mathfrak{G}} \alpha = \alpha \nabla_{\mathfrak{G}}$, так что α переводит циклы в циклы

а циклы, гомологичные нулю, в циклы, гомологичные нулю.

Г. Важнейшим примером системы локальных групп пространства Y служит система гомотопических групп $\pi_y^p(Y)$ некоторой размерности p>1; $y\in Y$ есть "начало", относительно которого построена группа. Путям α_t^y соответствуют известные изоморфизмы, используемые, например, в доказательстве "независимости гомотопических групп от начальной точки" (4). Для этой системы мы примем обозначение Π^p . Для системы $\mathfrak{G}=f^*\Pi^p$ пространства X (см. \mathfrak{F}) мы вместо $\nabla_{\mathfrak{G}}$ будем писать $\nabla_{\mathfrak{F}}$.

Д. В симплициальном комплексе теории гомологий с локальными коэффициентами можно придать более удобный вид. Для этого мы используем теорию цепей над неабелевыми группами, развитую

Роббинсом (5).

Пусть K— симплициальный комплекс. Символом $x_0x_1\dots x_p$ мы обозначаем ориентированный p-мерный симплекс в K с вершинами x_0, x_1, \dots, x_p , ориентация которого задается указанным порядком вершин. p-мерной цепью комплекса K над мультипликативной, вообще говоря, неабелевой группой A мы назовем такую функцию p-мерного ориентированного симплекса из K со значениями в A, что при изменении ориентации значение функции переходит в обратное. Одномерная цепь a^1 над A называется циклом, если для любого двумерного симплекса $x_0x_1x_2$ из K

$$a^{1}(x_{0}x_{1}) a^{1}(x_{1}x_{2}) a^{1}(x_{2}x_{0}) = 1.$$

Два одномерных цикла a^1 и b^1 называются гомологичными между собой, если существует такая нульмерная цепь a^0 над A, что

$$a^{_1}(x_{_0}x_{_1}) = (a^{_0}(x_{_0}))^{-1}b^{_1}(x_{_0}x_{_1}) \ a^{_0}(x_{_1})$$

для любого симплекса x_0x_1 из K. В записи: $a^1:b^1=\nabla a^0$ или $a^1\sim b^1$. Отношение гомологичности рефлексивно, симметрично и транзитивно, 162

так что совокупность одномерных циклов распадается на гомологи-

ческие классы.

E. Пусть A является группой левых операторов абелевой группы G. q-мерной цепью комплекса K над группой G называется, как обычно, нечетная функция д-мерного ориентированного симплекса из К со значениями в G. Зададим в K некоторый фиксированный порядок вершин и при помощи его поставим в соответствие каждому одномерному циклу $a^{\mathfrak{t}}$ над A операцию $\nabla_{a^{\mathfrak{t}}}$, определяемую соотношением

$$\nabla_{a^{*}} c^{q} (x_{0} x_{1} \dots x_{q+1}) = a^{1} (x_{0} x_{1}) c^{q} (x_{1} \dots x_{q+1}) + \sum_{k=1}^{q+1} (-1)^{k} c^{q} (x_{0} \dots x_{k-1} x_{k+1} \dots x_{q+1}).$$

Здесь c^q есть произвольная q-мерная цепь над G, а $x_0 \dots x_{q+1}$ — произвольный ориентированный (q+1)-мерный симплекс из K, записанный так, что x_0 предшествует всем остальным его вершинам $x_1, \ldots,$ x_{o+1} относительно заданного в K порядка вершин. Легко видеть, что $abla_{a^1}
abla_{a^1} = 0$, так что можно повторить относительно цикла a^1 построения обычной теории гомологий. Легко видеть, что эта теория является лишь иной формой теории гомологий с локальными коэффициентами.

Пусть a^0 — нульмерная цепь из K над A, тогда операция $c^q o a^0 c^q$, определенная формулой $a^0c^q(x_0\dots x_q)=a^0(x_0)c^q(x_0\dots x_q)$, где x_0 предшествует всем остальным x_i , является автоморфизмом группы q-мерных цепей комплекса K над группой G. Легко видеть, что если a^1 : $b^1=
abla a^0$, то $abla_{b^1}a^0c^q=a^0
abla_{a^1}c^q$, так что автоморфизм a^0 переводит гомологии относительно a^1 в гомологии относительно b^1 .

 \mathcal{K} . Отображение комплекса K в пространство Y называется нульнормальным, если все вершины комплекса отображаются в фиксированную точку * пространства Y. Очевидно, что любое отображение гомотопно нульнормальному, так что в вопросах классификации достаточно рассматривать лишь нульнормальные отображения.

Нульнормальное отображение f отображает каждый одномерный симплекс x_0x_1 из K в замкнутый путь пространства Y с началом в точке *. Элемент фундаментальной группы $\pi_*^{-1}(Y)$ пространства Yв точке *, соответствующий этому пути, обозначим через $a_t^{-1}(x_0x_1)$. Цепь а, оказывается циклом и называется фундаментальным циклом отображения f. Отображение f называется принадлежащим циклу a_f 1. Известно, что $\pi_*^{-1}(Y)$ может рассматриваться как группа операторов группы $\pi_*^{-p}(Y)$ (при p>1). Следовательно, определена операция ∇_{a_f} . Оказывается, что она совпадает с операцией ∇_f .

Фундаментальные циклы гомотопных отображений гомологичны между собой, так что каждому гомотопическому классу отображений соответствует определенный гомологический класс одномерных циклов над группой $\pi_*^{-1}(Y)$. Цепь, осуществляющая эту гомологию, естественным образом определяется нульнормальной гомотопией, связывающей отображения, а автоморфизм, соответствующий этой нульмерной

цепи, совпадает с изоморфизмом, указанным в пункте Б.

3. Вернемся теперь к клеточным комплексам. Общее понятие клетки для нас слишком широко, мы сузим его, определив ячейки. q-мерная клетка с односвязным замыканием называется ячейкой, если можно задать отображение q-мерного замкнутого куба на ее замыкание, гомеоморфно отображающее на нее внутренность куба. Если все клетки клеточного комплекса К являются ячейками, то комплекс мы назовем ячеечным. Представителя ячейки всегда будем выбирать среди ее вершин.

Через K^p мы обозначим подкомплекс комплекса K, состоящий из всех его ячеек размерности $\ll p$. Будем далее считать, что p>1.

И. Пусть f — отображение подкомплекса K^p в пространство Y и пусть $\sigma^{p+1}-(p+1)$ -мерная ориентированная ячейка комплекса K, а ϕ — предусмотренное в 3, сохраняющее ориентацию отображение ориентированного куба E^{p+1} с границей S^p на замыкание ячейки σ^{p+1} . Выбрав среди φ -прообразов представителя ячейки σ^{p+1} одну точку, примем ее за полюс сферы S^p . Отображение $f \varphi \mid S^p$ поляризованной примем ее за полюс сферы $c_f^{p+1}(\sigma^{p+1})$ группы $\pi^p_{f(x(\sigma^p+1))}$, не зависящий от φ . Цепь c_f^{p+1} над системой $f^*\Pi^p$ назовем препятствием

продолжению отображения f.

Легко видеть, что: 1) $\nabla c_f^{p+1} = 0$. 2) Если f гомотопно g и α —
соответствующий изоморфизм системы $g^*\Pi^p$ на систему $f^*\Pi^p$, то $c_f^{p+1} = \alpha c_g^{p+1}$. 3) Если $f \mid K^{p-1}$ гомотопно $g \mid K^{p-1}$ и α —соответ $c_f^{p} = \alpha c_g^{p}$. От Если у темы $g^*\Pi^p$ на систему $f^*\Pi^p$, то $c_f^{p+1} \sim \alpha c_g^{p+1}$. 4) Если $c^{p+1} -$ любой цикл над $f^*\Pi^p$, гомологичный циклу c_f^{p+1} , то 4) Если c^{p+1} — любой цикл над $f^*\Pi^p$, гомологичный циклу c_f^{p+1} существует такое отображение g, совпадающее с f на K^{p-1} , $c_{g}^{\ p+1}=c^{p+1}$. 5) $c_{f}^{\ p+1}=0$ тогда и только тогда, когда отображение fможет быть продолжено до отображения комплекса K^{p+1} 6) $c_f^{p+1} \sim 0$ тогда и только тогда, когда отображение $f \mid K^{p-1}$ комплекса K^{p-1} продолжаемо до отображения комплекса K^{p+1} .

К. Пусть отображения f и g комплекса K^p совпадают на K^{p-1} .

Tогда $f^*g = g^*$ \mathfrak{G} для любой системы \mathfrak{G} в Y.

Пусть σ^p — ориентированная ячейка из K^p и пусть ϕ — предусмотренное в 3 отображение ориентированного куба E^p , поляризованного, как в пункте И, с сохранением ориентации, отображающее этот куб на замыкание ячейки σ^p . Пусть ι — гомеоморфное отображение ориентированного куба E^p на другой ориентированный куб \mathfrak{G}^p , обращающее ориентацию. Отождествим границы этих кубов так, чтобы точка х границы куба E^p совместилась с точкой $\iota(x)$. После отождествления мы получим *p*-мерную поляризованную сферу $S^p = E^p \cup \mathcal{E}^p$. Если $x \in E^p$, положим $F(x) = f(\varphi(x))$; если $x \in \mathcal{O}^p$, положим $F(x) = g(\varphi(\iota^{-1}(x)))$.

Очевидно, что Р является однозначным непрерывным отображением поляризованной сферы S^p в пространство Y. Соответствующий элемент группы $\pi^p_{f(x(\sigma^p))}$ обозначим через $d^p_{f,g}(\sigma^p)$. Цепь $d^p_{f,g}$

 $f^*\Pi^p$ назовем цепью, отличающей f от g. Легко видеть, что: 1) $\nabla_f d_{f,\,g}^p = c_f^{p+1} - c_g^{p+1}$. 2) $d_{f,\,g}^p + d_{g,\,h}^p = d_{f,h}^p$. 3) Для любого отображения $f: K^p \to Y$ и любой цепи d^p над $f^*\Pi^p$ существует такое отображение $g: K^p \to Y$, совпадающее с f на K^{p-1} , что $d_{f,g}^{p}=d^{p}$. 4) $d_{f,g}^{p}=0$ тогда и только тогда, когда f гомотопно gотносительно K^{p-1} . 5) $d_{f,g}^p \sim 0$ тогда и только тогда, когда f гомотопно g относительно K^{p-2} .

Поступило 14 III 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. С. Понтрягин, Матем. сб., 9: 2, 331 (1941). ² S. Eilenberg, Ann. of Math., 41, 231 (1940). ³ N. Steenrod, Ann. of Math., 44, 630 (1943). ⁴ В. А. Рохлин, Усп. матем. наук, нов. сер., 1, в. 5—6, 175 (1946). ⁵ Н. Robbins, Trans. Am. Math. Soc., 49:2, 308 (1941).