ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Н. Е. ФИЛОНЕНКО и И. В. ЛАВРОВ

ГЕКСААЛЮМИНАТ ИЗВЕСТИ В СИСТЕМЕ CaO – Al₂O₃ – SiO₂

(Представлено академиком Д. С. Белянкиным 1 IV 1949)

В результате исследования, проведенного одним из авторов ранее (¹), установлено существование гексаалюмината извести в системе CaO — Al₂O₃. Естественным продолжением нашей работы было установление области устойчивости гексаалюмината извести в системе CaO — Al₂O₃ — SiO₂, как известно, не обнаруженного Ранкиным и Райтом при изучении условий равновесия в системе.

С этой целью мы подвергли исследованию составы в высокоглиноземистой части системы методом закалки с последующим микроскопическим анализом закаленных проб.

Как известно, составы в этой части системы, при самом резком охлаждении, не удается получить в виде стекол. Однако кристаллы, выделившиеся в период выдержки, в несколько раз превосходят по своим размерам кристаллы, образовавшиеся в процессе охлаждения. Это позволяет с достаточной точностью установить истинную температуру выделения кристаллической фазы из расплава.

Смеси для исследования изготовлялись из тонкоизмельченного горного хрусталя, химически чистой окиси кальция (в виде углекислого кальция) и глинозема, суммарное содержание примесей в котором не превышало 0,2%. Глинозем изготовлялся из технического гидрата путем перевода последнего в алюминатный раствор и повторного осаждения. Тщательно промытый гидрат прокаливался в течение 1 часа при 1000°. В результате получался высокодисперсный γ-глинозем со светопреломлением, близким к 1,70.

Из тщательно перемешанных смесей прессовались таблетки весом 0,3 г, которые помещались затем на зинтеркорундовую подставку и подвергались экспозиции в горизонтально расположенной трубе печи Таммана. Температура измерялась оптическом пирометром (завода «Пирометр»), раскаленная нить которого наводилась на испытуемый образец. Экспозиция при заданной температуре производилась с точностью ±10°.

По окончании экспозиции таблетки выталкивались в водяную ванну. Перед экспозицией таблетки нагревались в печи в течение 30—60 мин. при температуре, на 50—100° превышающей температуру экспозиции, для обеспечения возможно более полного реагирования между собой исходных компонентов и однородности получающегося при этом расплава. Мы не считали возможным воспользоваться обычным методом подготовки проб путем неоднократного их сплавления с последующим истиранием, ввиду высокой твердости выделяющихся из расплава корунда и CaO · 6Al₂O₃ и неизбежного в связи с этим загрязнения проб при истирании. С целью установления поля устойчивости гексаалюмината извести нами были изготовлены смеси, составы которых с интервалом в 5% покрывали всю интересующую нас область расплавов в углу Al₂O₃ системы CaO — Al₂O₃ — SiO₂. Затем была определена первичная фаза в каждой из этих смесей, подвергавшихся длительной экспозиции с последующей закалкой при температурах в интервале 1450—1800°.

В результате такого предварительного исследования мы установи-

Рис. 1

ли приблизительно поле устойчивости CaO · 6Al₂O₃ и положение пятерной точки. На основе этих данных изготовлялись и исследовались новые смеси для уточнения пограничных линий поля до <u>1</u>,0% и состава пятерной точки до радиуса 0,5%.

Всего нами было произведено свыше 200 термических опытов с последующим микроскопическим исследованием закаленных проб.

В изученной области тройных смесей обнаружено выделение трех кристаллических фаз: корунда, CaO·6Al₂O₃ и CaO·2Al₂O₃.

Корунд Al₂O₃ кристаллизуется в тригональной системе и выделяется из расплава в виде изометричных

кристаллов, представляющих собой комбинацию ромбоэдра с базапинакоидом (рис. 1). Оптические свойства корунда: $N_0 = 1,768$. $N_e = 1,760$, $N_0 - N_e = 0,008$.

Гексаалюминат извести CaO · 6Al₂O₃ кристаллизуется в гексагональной системе и выделяется из расплава в виде шестиугольных пластинок.

представляющих собою комбинацию базапинакоида с бипирамидой и реже призмой (рис. 2). Оптические свойства CaO \cdot 6Al₂O₃: $N_0 = 1,759$, $N_e = 1,752$, $N_0 - N_e = 0,007$.

СаО \cdot 2Аl₂O₃ выделяется из расплава в виде зерен и пластинок, оптические свойства которых совпадают с таковыми Райта (²): $N_e = 1,652$, $N_0 = 1,617$, $N_e - N_0 = 0,035$ (см. детальнее у Д. С. Белянкина и И. И. Шумило (³)). Температуры плавления различных составов внутри поля гексаалюмината извести представлены в табл. 1.

Приближенные температуры плавления некоторых точек на пограничных кривых были получены нами в результате экстраполяции на основа-

Рис. 2

нии температур плавления составов внутри поля CaO · 6Al₂O₃. Для уточнения температур плавления вдоль пограничных кривых исследованию подвергались как составы, расположенные в непосредственной близости от пограничных линий, так и составы, лежащие на прямой, проходящей через определяемую точку и точку состава одной из твердых фаз, разделяемых пограничной кривой.

Данные, полученные в результате опытов закалки и последующего микроскопического анализа образцов, представлены в табл. 2. 674 Для определения температуры плавления пятерной точки мы подвергли исследованию ряд составов, расположенных в полях устойчивости свойственных ей трех кри-

Таблица 1

сталлический фаз: корунда, CaO · • 6Al₂O₃ и анортита.

Экспозиции подвергались небольшие пробы (весом не более 0,1 г) смеси, предварительно сплавленной в оптически однородное стекло. Пробы завертывались в платиновую фольгу и подвешивались на платиновой проволоке в платиновой каскадной печи. Температура контролировалась платино-платино-родиевой термопарой. По окончании экспозиции иережиганием проволоки проба сбрасывалась в водяную ванну.

Данные, полученные в результате опытов закалки и последуюшего микроскопического анализа образнов, представлены в табл. 3Температура плавления составов в поле СаО · 6Аl₂O₃

C				
Al ₈ O ₈	SiO _n CaO		Т. пл. в °С	
45 55 55 60 60 6 5 70 75 80	30 25 20 25 20 15 15 10 5 5	25 25 20 20 25 20 20 20 20 20 20 15	1535 1560 1595 1610 1620 1645 1675 1705 1735 1780	

Таблица 2

Микроскопический анализ закаленных проб

Состав в вес. %			Bpe	Время	
A1,0,	SiO ₃	CaO	Т-рав°С	B MEH.	Результат микроскопического анализа
	Погран	нчная кр	н вая межд	цу поля	ими СаО·6Аі́ ₂ О ₃ и корунда
50,0	30,0	20,0	1590	40	Редкие кристаллы корунда в стекле
1,0	50,0	44,0	1000	40	гедние пластинки СаО · оА1 ₂ О ₃ в
70.0	15.0	15.0	1740	60	Компные кристаллы корунда на фоне
67,5	15,0	17,5	1700	60	инкролитов в стекле Крупные пластинки СаО · 6Al ₂ O ₃ на
75,0	15,0	10,0	1540	60	Корунд в стекле
75,0	15,0	10,0	1530	60	Корунд, CaO · 6А1 ₂ O ₃ в стекле
75,0	13,0	12,0	1680	90	Крупные кристаллы корунда, микро-
75,0	13,0	12,0	1660	90	Корунд, CaO · 6Al ₂ O ₂ , микролиты.
			1.000		Стекло
85,0	5,0	10,0	1800	120	Корунд, микролиты
00,0	0,0	10,0	1110	120	корунд, Са $0 \cdot 6 A_{12}O_3$, микролиты
	Пограничи	ная крив	ая между	полямн	саО • 6Al ₂ O ₃ и CaO • 2Al ₂ O ₃
65.0	10,0	25,0	1660	60	Микролиты в стекле
65,0	10,0	25,0	1650	60	CaO · 6Al ₂ O ₃ , CaO · 2Al ₂ O ₃ в стекле
72,5	5,0	22,5	1720	90	$CaO \cdot 6Al_2O_3$, CaO $\cdot 2Al_2O_3$, микро-
65.0	10.0	24.5	1640	60	Редкие пластинки СаО · 6А "О. с ми-
					кролитами в стекле
65,0	10,5	24,5	1620	60	$CaO \cdot 6Al_2O_3$, $CaO \cdot 2Al_2O_3$, MHKpo-
75,0	5,0	20,0	1700	60	Редкие пластинки СаО · 6АІ.О. на
			1.000	0.0	фоне микролитов
15,0	5,0	20,0	1680	60	$[CaO \cdot 6A_{2}O_{3}, CaO \cdot 2A_{2}O_{3}]$ на фоне

На основе полученных данных пятерная точка, в которой сосуществуют корунд, CaO $\cdot 6Al_2O_3$ и анортит в равновесии с жидкостью и паром, имеет состав: Al_2O_3 41,0 \pm 0,5%/6, SiO₂ 36,0 \pm 0,5%/6, CaO 23,0 \pm \pm 0,5%/6 и т. пл. 1495 \pm 5%.

По данным, полученным в результате проведенного исследования, нами составлена концентрационно-температурная диаграмма равновесия

CA250 CA угла Al₂O₃ тройной системы CaO — Al₂O₃ — SiO₂ (рис. 3).

Рассмотрение диаграммы показывает, что поле CaO·6Al₂O₃ граничит с полями устойчивости корунда, анортита, галенита и CaO·2Al₂O₃. Пограничные кривые между полями корунда, CaO·6Al₂O₃ и анортита сходятся в пятерной точке с т. пл. 1495°.

СаО • 6Аl₂O₃ плавится с разложением на корунд и жидкость, фигуративная точка его состава расположена в поле корунда. Реакция СаО • 6Аl₂O₃ ⊂ корунд + расплав имеет место при определенных концентрациях (по пограничной кривой) в интервале 1500—1850°.

Таблица З

Состав в вес. %				Время	
Al ³ O ³	SiO,	CaO	Т-рав°С	В МИН.	Результат микроскопического анализа
40.0	36.3	93 7	1500	60	CTANED DATIVE SHADTHT
40 0	36.3	23 7	1450	60	Augment C_{RO} , $6\Delta_{1}O$
40 0	37.5	22,5	1520	60	
10,0	01,0	22,0	1020	00	KODVHTA N CaO, 6ALO.
40.0	37 5	22.5	1500	40	To we no KONCTATION BOOK THEY day
10,0	01,0	22,0	1000	10	больше
40.0	37.5	22.5	1490	40	Анортит, коруни, СаО · 6А1.О.
42.5	35.0	22.5	1520	60	Елиничные кристаллы корунда в
		,_	1		стекле
42,5	35,0	22,5	1510	60	Единичные кристаллы корунда и
					СаО · 6Аl ₂ O ₈ в стекле. Отчетливо на-
					блюдается резорбция некоторых кри-
					сталлов корунда с образованием
					$CaO \cdot 6Al_2O_3$
42,5	35,0	22,5	1500	60	Корунд, CaO · 6А1 ₂ O ₃ , анортит в
10 7					стекле
42,5	35,0	22,5	1490	60	Корунд, CaO · 6Аl ₂ O ₃ , анортит
40,5	36,5	23,0	1505	40	Корунд и анортит в стекле
40,5	36,5	23,0	1500	40	Корунд, анортит и CaO · 6Al ₂ O ₃ в
10 5	26 5	02 0	1400	10	стекле
40,0	30,0	23,0	1490	40	корунд, анортит, СвО · 6Аl ₂ O ₃
1	1				

Микроскопический анализ закаленных проб

Таким образом, в результате проведенного исследования установлена область устойчивости гексаалюмината извести в системе CaO — Al₂O₃ — SiO₂ и тем самым уточнена и дополнена высокоглиноземистая часть системы.

Всесоюзный научно-исследовательский институт абразивов и шлифования

Поступило 1 IV 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹Н. Е. Филоненко, ДАН, 64, № 4 (1949). ²G. А. Rankin and F. E. Wright, Am. J. Sci., 4, 34, 229 (1915). ⁸Д. С. Белянкин и И. И. Шумило, Тр. Петрогр. ин-та, в. 13, 241 (1938). 676