ФИЗИКА

Действительный член АН БССР Н. С. АКУЛОВ

к теории сплавов

Рассмотрим сплав, состоящий из компонент A_1, A_2, \ldots, A_n , входящих в атомных концентрациях C_1, C_2, \ldots, C_n .

Физические свойства сплава будут определяться типом его решетки, концентрациями C_i и свойствами атомов A_1, A_2, \ldots, A_n и, наконец, ха-

рактером их распределения в узлах решетки.

Цель настоящего исследования показать, что учет зависимости свойств каждого из атомов A_i в кристаллах от числа и характера тех атомов, которые являются его соседями, приводит к согласующейся с опытом зависимости магнитного насыщения сплавов от концентраций компонент. При этом удается учесть и роль распределения атомов в узлах решетки.

Пусть Z есть координационное число, причем Z_{i1} мест около

атома A_i занято атомами $A_{\mathbf{1}},~Z_{i2}$ мест занято атомами $A_{\mathbf{2}}$ и т. д.

Мы будем полагать, что в первом приближении воздействия соседних атомов на рассматриваемый атом налагаются аддитивно. Тогда рассматриваемый параметр, характеризующий свойства атома A_i , например магнитный момент, определится соотношением

$$\mu_i = \mu_{ii} + \sum a_{ij} Z_{ij},\tag{1}$$

где $a_{ii}=0$ и $\sum_{j}Z_{ij}=Z.$

Здесь μ_{ii} есть средний магнитный момент атома A_i в окружении атомов A_i , а a_{ij} — приращение момента при замене одного соседнего

атома A_i на атом A_i .

Числа Z_{ij} зависят, с одной стороны, от концентрации C_j и, кроме того,— от энергии взаимодействия атомов различного типа ε_i , а также от температуры. В простейшем случае, именно при высоких температурах, вероятности помещения атомов любого типа с атомами данного типа будут одинаковыми, т. е. распределение будет полностью беспорядочным. В этом случае, как легко видеть из основных теорем теории вероятности, число Z_{ij} будет пропорционально концентрации C_j . Таким образом, будем иметь в случае полного разупорядочения:

$$Z_{ij} = ZC_{j}. (2)$$

Если данный физический параметр, определяющий свойства сплавов, аддитивно складывается из аналогичных параметров, определяю-

щих свойства атома, как это, например, имеет место в случае магнит**но**го насыщения сплава J_{s} , то мы будем иметь:

$$J_s = N \sum_i \mu_i C_i, \tag{3}$$

где N — число узлов в 1 см 3 .

Подставляя сюда значение μ_i из формулы (1), мы получаем:

$$J_s = N \sum_i \mu_{ii} C_i + N \sum_{ij} a_{ij} Z_{ij} C_i, \tag{4}$$

где a=0.

Из (2) и (4) находим для случая разупорядочения:

$$J_s = N \sum_i \mu_{ii} C_i + NZ \sum_{ij} a_{ij} C_i C_j.$$
 (5)

Сопоставление этой формулы с опытными данными для целого ряда сплавов, например бинарных сплавов Ni, Fe и др., дает действительно достаточно хорошее согласие *.

Это дает возможность определять коэффициенты μ_{ii} и a_{ij} . В част-

ности, для бинарного сплава (5) дает:

$$J_s = N \left(\mu_{11} C_1 + \mu_{22} C_2 \right) + NZ \left(a_{12} + a_{21} \right) C_1 C_2, \tag{6}$$

где $C_1=1-C_2$. Формула (6) может быть переписана в виде

$$J_s = J_{s0} + b_1 C_1 - b_2 C_2^2, (7)$$

где

Величина J_{s0}^{\prime} есть насыщение, которое имел бы растворенный металл в пределе, если бы он полностью заполнил все узлы решетки растворителя. Определив опытным путем $b_{\scriptscriptstyle 0},\,b_{\scriptscriptstyle 1},\,b_{\scriptscriptstyle 2},\,$ можно найти J_{s0} Действительно, из (7) имеем:

$$J_{s0} = J_{s0} + b_1 + b_2, (9)$$

т. е. сумма коэффициентов разложения $J_{_{3}}$ в ряд по степеням C_{2} дает магнитное насыщение второго металла, если бы он имел решетку первого (растворителя).

Это правило, естественно, справедливо и тогда, когда постоянная решетка меняется от C_2 , что влечет за собой изменение a_{ij} по мере увеличения C_2 , а вместе с тем появление члена третьего порядка $(b_3C_2{}^3)$.

Вторым случаем, который также легко рассчитывается на основе данных здесь концепций, являются упорядоченные твердые растворы.

^{*} Соответствующее сопоставление теории с опытом было проведено Е. П. Свириной. 362

Рассмотрим, например, двухкомпонентный сплав типа $50^{\circ}/_{0}A_{1}$, $50^{\circ}/_{0}A_{2}$. При полном беспорядке мы имеем $Z_{ij}=\frac{1}{2}Z$. Наоборот, в случае полного порядка все Z соседних мест около атома A_{1} будут заняты атомами A_{2} . И наоборот, все Z мест около атома A_{2} будут замещены атомами A_{1} .

Мы можем теперь ввести понятие степени упорядочения (ближ-

него порядка), охарактеризовав ее отношением:

$$Z_{12} = Z_{21} = \frac{1}{2}Z + \sigma \frac{1}{2}Z, \tag{10}$$

где $0 \leqslant \sigma \leqslant 1$.

В случае сплавов типа $75^0/_0\,A_1$ и $24^0/_0\,A_2$ для гранецентрированной решетки максимальное число иносортных атомов (около атома A_1) $Z_{12}=4$ и (около A_2) $Z_{21}=12$.

 $Z_{12}=4$ и (около A_2) $Z_{21}=12$. Между тем, в случае полного беспорядка эти числа равны, соответственно, $^1/_3$ и $^3/_4$. Вводя так же, как и ранее, понятие степени

порядка, получим:

$$\begin{split} Z_{12} &= \frac{1}{4} Z + \sigma' \left(\frac{1}{3} - \frac{1}{4} \right) Z = 3 + \sigma', \\ Z_{21} &= \frac{3}{4} Z + \sigma'' \frac{1}{4} Z = 3 \left(3 + \sigma'' \right). \end{split} \tag{11}$$

При этом в первом приближении можно считать:

$$\sigma' = \sigma''. \tag{12}$$

Зная Z_{ij} , легко определить магнитный момент сплава для любой степени порядка. Действительно, на основании формул (4), (7), (8) получим:

в случае сплавов типа A_1A_2 :

$$J_s = \frac{1}{2} N \left(\mu_{11} + \mu_{22} \right) + \frac{1}{4} Z N \left(a_{12} + a_{21} \right) (1 + \sigma); \tag{13}$$

в случае сплавов типа $(A_1)_3 A_2$:

$$J_s = \frac{1}{4} N (3\mu_{11} + \mu_{22}) + \frac{3}{4} N (a_{12} + a_{21}) (3 + \sigma).$$
 (14)

Переход от разупорядоченного к упорядоченному твердому раствору дает прирост для сплава $(A_1)_3\,A_2$

$$\Delta J_s = \frac{3}{4} N (a_{12} + a_{21}). \tag{15}$$

Данные здесь формулы дают возможность, исследовав характер зависимости насыщения от концентрации присадка, в случае разупорядоченных растворов определить изменение насыщения при упорядочении сплавов. Действительно, если сопоставить величину ΔJ_s с bC_2^2 , то легко видеть, что они равны.

Таким образом, получается следующее весьма простое правило. Если мы определим кривую $J_s(C_2)$ для случая полного беспорядка и возьмем касательную к этой кри-

вой в точке $C_2=0$, то отрезок ΔJ_s между кривой и прямой (взятый в точке $C_2=1/4$ (для сплавов $(A_1)_3\,A_2$) или $C_2=1/2$ (для сплавов A_1A_2)) даст нам приращение магнитного момента при упорядочении.

Для J_s при $T \neq 0$ имеем

$$J_s = (J_s)_{T=0} F\left(\frac{T}{0}\right), \tag{16}$$

где θ — точка Кюри, а F — универсальная функция T/θ .

Пусть $2\varepsilon_{ii}$ — разность энергий для состояний с параллельным и антипараллельным расположением спина у атома A_i , окруженного Z атомами типа A_i . Пусть $2b_{ij}$ — изменение этой разности при замене одного из соседних атомов типа A_i на атом типа A_j . Тогда разность энергий $2\varepsilon_i$ в общем случае определится соотношением:

$$\varepsilon_i = \varepsilon_{ii} + \sum_j b_{ij} Z_{ij}. \tag{17}$$

Для половины средней разности энергий атомов различного типа получим, согласно (17):

$$\bar{\varepsilon} = \sum_{i} \varepsilon_{i} C_{i} = \sum_{i} \varepsilon_{ii} C_{i} + \sum_{ij} b_{ij} C_{i} Z_{ij}. \tag{18}$$

Но критическая температура θ , согласно теории Гейзенберга — Стонора, равна ε/K . Таким образом для θ находим соотношение, аналогичное (4):

$$\theta = K^{-1} \left(\sum_{i} \varepsilon_{ii} C_i + \sum_{ij} b_{ij} C_i Z_{ij} \right). \tag{19}$$

Соотношения (4), (16) и (19) дают возможность рассчитать насыщение сплавов различного типа. Из (19), (10) и (11) следует, что θ является линейной функцией ближнего порядка σ . Указанное выше для J_s правило касательной справедливо и для θ .

Поступило 25 III 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Акулов, Ферромагнетизм. 1939. ² С. Вонсовский и Шур, Ферромагнетизм, 1948. ³ А. Комар, Изв. АН СССР, сер. физ., **11**, № 5 (1947).