БИОФИЗИКА

М. Ф. ПОПОВ и Е. А. ЛИХТЕНШТЕЙН

импульсная рентгенография живых объектов

(Представлено академиком Л. А. Орбели 4 II 1949)

Использование конденсатора в качестве источника напряжения, прикладываемого к рентгеновской трубке, позволяет осуществить короткий импульс тока через трубку и получить мощное, но кратковременное рентгеновское излучение. Это должно: 1) обеспечить независимость рентгенографии от качества питающей сети и 2) позволить весьма сократить время экспозиции.

Для выяснения фактических возможностей медицинского использования импульсных аппаратов и определения основных параметров последних, пробной эксплоатации был подвергнут экспериментальный макет импульсного рентгеновского аппарата. Макет состоял из батареи конденсаторов, заряжавшихся от высоковольтного трансформатора через кенотрон и высокоомное сопротивление. Включение трубки осуществлялось с помощью искрового разряда, достигавшегося разными способами.

На описанной установке было произведено 200 снимков различных анатомических фантомов, здоровых людей и больных. Испытывались емкости от 0,036 до 0,16 р.F., напряжения от 50 до 100 кв, различные расстояния до пленки, влияние величины фокуса и отсеивающей решетки; использовалось от 1 до 12 импульсов на рентгенограмму; эффективная выдержка колебалась от десятых до тысячных секунды.

Эксплоатация установки, подтвердив общую пригодность импульсного аппарата для медицинской рентгенографии, позволила установить:

1. Конденсаторный аппарат обладает ясными преимуществами по сравнению с обычными при рентгенографии функционально меняющих свою форму и физиологически постоянно подвижных органов, нерезкость изображения которых зависит от смещения их границ во время экспозиции. Так например, на импульсных снимках сердца обнаруживается недостижимая ранее резкость его контуров и «неподвижность» контрастных включений в сердце (объизвествления, инородные тела). Это позволяет вести точные измерения силуэта сердца, учет его изменений в разных фазах сердечного цикла, определение истинной величины сокращений, а также разнообразных патологических изменений формы и размеров сердца.

2. Импульсные снимки легких также заметно отличаются от производимых обычными аппаратами. Нейтрализация короткой выдержкой нерезкости, обусловленной передаточным смещением анатомических структур, создающих «легочный рисунок», приводит к необычной четкости контуров крупных компонентов последнего и обилию деталей, «размазывающихся» за используемое в практике время экспозиции. Это позволяет различать на рентгенограммах живого человека типовую схему расположения и состояния сосудов легкого, а также, повидимому, рано распознавать отклонения от этой схемы как в эксперименте, так и при различных патологических состояниях легочной ткани.

3. Импульсные снимки неподвижных во время экспозиции частей организма (например костей) не отличаются от обычных. Короткая выдержка оказывается полезной только в случаях подвижности самого объекта исследования — дети, дрожащие или не могущие задержать дыхание больные, нефиксированные животные и т. п. При использовании для подобных снимков повышенных напряжений нужно применять неподвижную отсеивающую решетку, не позволяющую, однако, различать некоторые мелкие детали. Это приводит к необходимости сконструировать решетку с быстрым ходом растра, синхронизированным с разрядом через трубку.

4. Рассмотрение серии импульсных снимков различных объектов и фотометрические измерения позволили подобрать таблицу экспозиций для основных объектов рентгенографии при различных емкостях и зарядных напряжениях. При сравнении условий обычных и импульсных снимков необходимо учитывать остаточный заряд конденсатора после разряда через трубку, составлявший в среднем около 14% зарядного. В табл. 1 приводятся сокращенные данные, позволяющие произвести пересчет для других органов человека и лабораторных животных.

Таблица 1

Сокращенная таблица экспозиций и необходимых емкостей при импульсных снимках человека (две цифры указывают возможные вариации в зависимости от толщины субъекта)

Рентгенограммы	Экспозиция в масек. (а) и емкость в µF (б)	Напряжение в кв							
		65	70	75	80	85	90	95	100
Грудной клетки прямая,1 м (взрослые и дети)	a	36 45	24 33	15 20	10 15	8 12	6 10	5 8	4
	б	0,55 0,70	0,34 0,45	0,20 0,27	0,13 0,17	0,10 0,15	0,07 0,12	0,05 0,08	0,0
Флуорография грудной клетки	а б	=		_	24 0.3	18 0.22	13 0,15	10 0,11	7,5 0,0
Газобедренного сустава прямая	а б	=	90 1,3	65 0,85	45 0,53	33 0,38	25 0,28	19 0,2	15 0,1
Голеностопиого сустава боковая	а б	16 0,25	11 0,15	9 0.12	6 0,08	4,5 0,05	_	=	

5. Проведенные исследования указывают на серьезное значение коротких экспозиций при рентгенографии живых объектов. Это позволяет ставить вопрос о конструкции и массовых испытаниях импульсного рентгеновского аппарата, который не только имеет некоторые технические преимущества, но, повидимому, также расширяет пределы рентгено-физиологических исследований и рентгенодиагностики заболеваний функционально меняющих свою форму и физиологически постоянно подвижных органов.

Эксплоатация лабораторного макета импульсной установки показывает, что при конструкции опытного аппарата можно использовать трубки и другие элементы современных диагностических установок. Общая емкость, применяемая в импульсных аппаратах, должна быть около

0,6 **р**F. Наиболее выгодно, чтобы она состояла из двух-трех неравных частей и при снимках использовались различные варианты включения последних. Регулировка по напряжению должна осуществляться мелкими ступенями. Следует учитывать, что на качество рентгеновских снимков в условиях импульсного разряда оказывает влияние наличие у трубок сеточного эффекта, зависящего от их конструкции.

Центральный научно-исследовательский институт рентгенологии и радиологии им. В. М. Молотова Минздрава РСФСР

Поступило 18 I 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. Е. Балыгин, Усп. ренггенотехн., 1, 1 (1937). ² И. Е. Балыгин, Вестн. рентгенол. и радиол., 31, 1, 30 (1938). ³ В. В. Дмоховский и А. Г. Сулькин, Новая рентгеновская установка, 1947. ⁴ Г. М. Страховский и В. А. Цукерман, Изв. АН СССР, ОТН, № 3 (1946). ⁵ В. А. Цукерман и А. И. Авдеенко, ЖТФ, 12, № 4—5 (1942). ⁶ W. I. Oosterkamp, Philips Techn. Rev.,