ФИЗИКА

В. П. ЗАХАРОВА и Л. Х. ЭЙДУС

ИССЛЕДОВАНИЕ СПЕКТРА ПЛОТНОСТЕЙ ШИРОКИХ АТМОСФЕРНЫХ ЛИВНЕЙ БОЛЬЩОЙ ПЛОТНОСТИ

(Представлено академиком Д. В. Скобельцыным 31 1 1949)

Спектр плотностей потоков частиц в широких атмосферных ливнях космических лучей исследовался многими авторами с помощью различной методики и на разных высотах ($^{1-8}$). Все измерения приводили к степенному виду закона распределения ливней по плотностям ρ , $N\left(>\rho\right)=A/\rho^{x}$, различаясь лишь значениями A и x в зависимости от высоты над уровнем моря и используемой методики.

Наиболее полные данные получены с помощью методики, использующей кратные совпадения разрядов в гейгеровских счетчиках различной площади. Как известно, при этом значение и можно получить

как по величине отношения чисел совпадений различной кратности, так и с помощью вариации площади счетчиков в совпадениях заданной кратности.

На рис. 1 приводится зависимость отношения C_3/C_6 от величины \varkappa для счетчиков одинаковой площади. Измеренный ранее (1) на высоте 3860 м над уровнем моря в широком диапазоне плотностей (от 3 до 300 частиц на 1 м²) интегральный спектр хорошо выражался степенным законом с $\varkappa=1,42$ (рис. 2, 1, точки помечены крестиками). Более внимательный анализ данных этих измерений указывает, однако, на некоторое изменение \varkappa при увеличении плотности регистрируемых ливней. В частности, значение \varkappa , полученное по кривой $C_3(\sigma)$ (σ — площадь счетчиков), $\varkappa=1,42$,

увеличивалось до 1,47 при вычислении по C_6 (σ).В то же время уменьшению площади регистрирующих счетчиков соответствовало увеличение отношения C_3/C_6 , а следовательно, и величины \varkappa (рис. 1). Так, $\sigma=60$ см² соответствует $\varkappa=1,5$, $\sigma=480$ см² соответствует $\varkappa=1,41$.

В настоящей работе приводятся результаты дальнейших измерений спектра плотностей широких атмосферных ливней в области весьма больших плотностей (до 5000 частиц на 1 м²). Установка регистрировала трех- и шестикратные совпадения разрядов в самогасящих счетчиках, расположенных в горизонтальной плоскости по окружности диаметром в 1,6 м на расстоянии 0,5 м от легкой крыши фанерного домика (\sim 0,5 г/см²).

	σ в см²		
	24	7	1,7
С ₃ (совп. в 1 час)	$1,13 \pm 0,04$	$0,133 \pm 0,015$	$0,011 \pm 0,003$
Св (совп. в 1 час)	0.37 ± 0.02	$0,040 \pm 0,007$	0.005 ± 0.002
C_2/C_6	$3,04 \pm 0,17$	$3,3 \pm 0,6$	$2,3 \pm 0,7$

Соответствующие результаты измерений приведены в табл. 1 и на рис. 2. Заштрихованный участок соответствует возможным значениям эффективной площади счетчиков наименьшей площади. В качестве таковых применялись стеклянные цилиндрические счетчики, диаметром 7 мм и номинальной длиной рабочей части 25 мм. За счет возможного

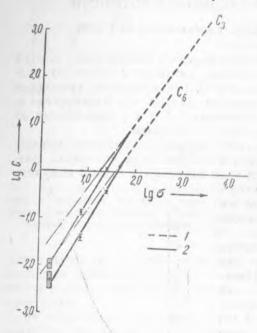


Рис. 2. 1 — измерения 1946 г., 2 — измерения 1948 г.

ослабления эффективности счетчиков около концов эффективная площадь могла уменьшиться не более как до 1,5 см². Внутренняя поверхность цилиндров покрывалась аквадагом. Счетчики наполнялись смесью, состоящей из 80% аргона и 20% этилена, при суммарном давлении в 120 мм рт. ст.

Как видно из рис. 2, крутизна спектра в области весьма больших плотностей значительно больше, чем в прилегающей области. Значение ж, полученное по отношению C_3/C_6 , не отличается от значения $\times (1.76 \pm 0.12)$, соответствующего наклону кривых на рис. 2. Это же относится и к области меньших плотностей Наблюденное Доденом Ловердо (°) существенное различие в значениях х, вычисленных по результатам измерений Коккони на уровне моря этими двумя способами, объясняется, ве-

роятно, привходящими обстоятельствами. В частности, при расположении счетчиков на плотном материале эффективная площадь увеличивается за счет обратного потока рассеянных в материале пола частиц ливней (10). Относительное увеличение эффективной площади больше для малых счетчиков. Это обстоятельство, равно как и возможное влияние плотного перекрытия над установкой, должно привести к уменьшению измеренного значения \varkappa по сравнению с истинным.

К тому же приводит учет уменьшения эффективной площади счетчиков при регистрации наклонных ливней установкой, состоящей из групп параллельно соединенных счетчиков, расположенных вплотную друг к другу. Так например, для ливней, идущих под углом θ к вертикали в плоскости, перпендикулярной оси счетчиков, эффективная площадь уменьшится в соз θ раз. Падение эффективности установок при переходе к большим площадям также отражается на результатах измерений значения к в работах различных иностранных авторов (11), что отмечается ими самими.

В связи с этим представляются более достоверными и сравнимыми с теоретическими значения х, полученные ранее различными авторами

из сравнения совпадений различных кратностей между собой.

Описываемые в настоящей работе измерения свободны от указанных погрешностей и могут быть корректированы лишь в отношении соответствия геометрических размеров счетчиков их истинной эффективной площади. При этом введение вышеуказанных поправок во всех областях спектра плотностей, полученного на этой высоте, не устраняет факта существенного увеличения крутизны спектра в области ливней высоких плотностей. Имевшееся ранее в литературе указание (5) об уменьшении крутизны спектра в области высоких плотностей не подтверждается.

Принимая постоянство по всему спектру показателя степени γ энергетического спектра первичных частиц, следует ожидать изменения κ по спектру плотностей широких ливней, ибо большим плотностям соответствует меньшее значение эффективного параметра S в выражении, полученном Мигдалом (12), $\kappa = \gamma / S$. Полученное экспериментальное изменение крутизны спектра плотностей довольно хорошо согласуется с предположением о степенном виде первичного энергетического

спектра с $\gamma = 1,7 \div 1,8$ вплоть до энергий $10^{16} - 10^{17}$ eV.

Вряд ли возможно ожидать точного согласия теории с экспериментом, принимая во внимание условность кладущегося в основу такого сравнения предположения об электронном характере первичного космического излучения, рождающего на границе атмосферы каскадные электронно-фотонные ливни.

Настоящее исследование было произведено летом 1948 г. на Па-

мире на высоте 3860 м.

Исследование спектра, проведенное на меньшей высоте (2200) (2), согласуется с результатом данной работы. В частности, находит свое объяснение некоторое увеличение отношения C_3/C_4 при больших плотностях, а также меньшая величина чисел C_3 и C_4 для минимальной площади счетчиков (11 см²) по сравнению со значениями, соответствующими степенным функциям, характеризующим ливни меньшей плотности.

Авторы выражают благодарность акад. Д. В. Скобельцыну, Н. А. Добротину и Г. Т. Зацепину за ценные советы и дискуссию полученных результатов.

Физический институт им. П. Н. Лебедева Академии наук СССР

Поступило 25 1 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Т. Зацепин, В. Миллер, И. Л. Розенталь и Л. Х. Эйдус, ЖЭТФ, 17, 1125 (1947). ² G. Соссопі, А. Loverdo and V. Tongiorgi, Phys. Rev., 70, 841 (1946). ³ G. Cocconi, A. Loverdo and V. Tongiorgi, ibid., 70, 846 (1946). ⁴ Р. Аидег et J. Daudin, J. phys. rad., 6, 233 (1945). ⁵ А. Алиханян и Т. Асатиани, ЖЭТФ, 15, 255 (1945). ˚ R. Маге, А. Freon and Р. Auдег, Phys. Rev., 73, 418 (1948). ⁻ Л. Лазарева, ibid., 70, 439 (1946). ⁵ К. Е. Lарр, ibid., 64, 129 (1943). ˚ J. Daudin et A. Loverdo, J. phys. rad., 8, 233 (1947). ¹¹ Г. Т. Зацепин и Л. Х. Эйдус, ЖЭТФ, 18, 259 (1947). ¹¹ А. Loverdo et G. Daudin, J. phys. rad., 9, 134 (1948). ¹² А. Мигдал, ЖЭТФ, 15, 313 (1945).