Доклады Авадемин Наук СССР 1949. Том LXV, № 4

MATEMATUKA

м. и. вишик

линейные расширения операторов и краевые условия

(Представлено академиком С. Л. Соболевым 8 II 1949)

Вопрос о нахождении всех однородных, линейных и корректных (в некотором смысле) краевых условий для данного дифференциального уравнения тесно связан с вопросом о нахождении всех корректных (в некотором смысле) линейных операторов, заключенных между двумя фиксированными операторами.

Настоящая заметка посвящена вопросу о нахождении всех корректных "краевых условий" для общих операторов, удовлетворяющих некоторым свойствам. Применение к описанию краевых условий для дифференциальных операторов будет дано в следующей заметке.

В первой части настоящей заметки мы находим общий вид "корректных расширений" фиксированного оператора, заключенных в другом фиксированном операторе. Во второй части найденные расши-

рения описываются с помощью "краевых условий".

Пусть A— замкнутый линейный оператор в сепарабельном пространстве Гильберта H и $\mathfrak{D}(A)$ —его область определения, всюду плотная в H. Предположим, что A имеет ограниченный обратный оператор A^{-1} , $\|A^{-1}\| < \infty$. Обозначим через A^* оператор, сопряженный к A, и через $\mathfrak{D}(A^*)$ —его область определения. Допустим, что существует такой замкнутый оператор A', содержащийся в A^* ($A' \subset A^*$), для которого сопряженный оператор A'^* отображает свою область определения $\mathfrak{D}(A'^*)$ на все $H: A'^*\mathfrak{D}(A'^*) = \mathfrak{R}(A'^*) = H$ (это условие всегда выполнено, если оператор A' имеет ограниченный обратный). Так как $A' \subset A^*$, то $A \subset A^{**} \subset A'^*$.

Ниже мы решаем вопрос об описании всех линейных, замкнутых расширений A оператора A, содержащихся в A'^* : $A \subset A \subset A'^*$, обладающих свойствами: 1) область изменения $\Re(A) = A \Re(A)$ совпадает со всем H и 2) A имеет ограниченный обратный. Такой оператор A будем называть корректным расширение A оператора A. Лемма. При указанных выше предположениях относительно A и A'^* существует по крайней мере одно корректное расширение A оператора A ($A \subset A \subset A \subset A'^*$).

Доказательство. $\Re(A) = A \Im(A)$ — замкнутое подпространство. Его ортогональное дополнение совпадает с подпространством U, состоящим из всех решений u однородного уравнения $A^*u = 0$:

$$H = \Re(A) \oplus U. \tag{*}$$

^{*} Понятие корректного расширения, введенное таким образом, не охватывает всех расширений, которые следовало бы назвать корректными, а только те из них, для которых θ не является точкой спектра.

Пусть V' — полный прообраз подпространства U при отображении $A'^*\colon A'^*V'=U$ (V', вообще говоря,—незамкнутое пространство). Очевидно, замкнутое подпространство U' всех решений u' однородного уравнения $A'^*u'=0$ является частью $V'\colon U'\subset V'$. Пусть \overline{V} — ортогональное дополнение к U' в $V'\colon V'=U'\oplus \overline{V}.$ Очевидно, $A'^*(\overline{V})=U.$ Обозначим оператор, совпадающий с A'^* на прямой линейной сумме множеств $\mathfrak{D}(A)$ и \overline{V} : $\mathfrak{D}(A) + \overline{V}$, через \overline{A} .

Так как $A'^*(V) = U$, то, согласно (*), \overline{A} отображает свою область определения $\mathfrak{D}(A)$ на все H. Очевидно, A имеет обратный оператор \overline{A}^{-1} . Легко видеть, что оператор \overline{A}^{-1} замкнут и, так как он задан на всем H, то он ограничен: $\|\overline{A}^{-1}\| < +\infty$. \overline{A} является, следовательно, линейным, корректным расширением А. Лемма доказана.

В дальнейшем через \overline{A} обозначаем некоторое фиксированное, корректное расширение оператора А (не обязательно совпадающее с построенным в лемме), через $\mathfrak{D}(\overline{A})$ — его область определения. Применяя к обеим частям формулы (*) оператор \overline{A}^{-1} , мы получим, что $\mathfrak{D}(\overline{A})$ разлагается в прямую линейную сумму:

$$\mathfrak{D}(\overline{A}) = \mathfrak{D}(A) + \overline{A}^{-1}U. \tag{1}$$

Легко видеть, что область определения $\mathfrak{D}(A'^*)$ разлагается в прямую сумму:

$$\mathfrak{D}(A'^*) = \mathfrak{D}(\overline{A}) + U' = \mathfrak{D}(A) + \overline{A}^{-1}U + U', \tag{2}$$

где U — подпространство решений u уравнения $A^*u=0$, а U' — подпространство решений u' уравнения $A'^*u'=0$. Следующей теоремой описываются все корректные линейные

расширения \tilde{A} оператора A ($A \subset \tilde{A} \subset A'^*$).

Теорема. Для того чтобы оператор А был корректным расширением оператора А, необходимо и достаточно, чтобы область определения $\mathfrak{D}(\tilde{A})$ разлагалась в прямую сумму:

$$\mathfrak{D}(\vec{A}) = \mathfrak{D}(A) + (\bar{A}^{-1} + B)U, \tag{3}$$

где B- непрерывный оператор, отображающий U в $[U]:BU\subset U',$ и чтобы оператор $ilde{A}$ совпадал c оператором A'^* на множестве $\mathfrak{D}(A)$. (Разложение (3) эквивалентно следующему: область $\mathfrak{D}(A)$ состоит из всех элементов f, допускающих однозначное представление $\tilde{f} = f + \tilde{A}^{-1}u + Bu$, $z\partial e f \in \mathfrak{D}(A)$, $a u \in U$.)

Доказательство. Докажем достаточность. Оператор $ilde{A}$ отобра-

жает $\mathfrak{D}(\tilde{A})$, допускающее представление (3), на все H:

$$\tilde{A} \mathfrak{D}(\tilde{A}) = \tilde{A} \mathfrak{D}(A) + \tilde{A}[(\tilde{A}^{-1} + B)U] = A \mathfrak{D}(A) + U = H$$

(так как $BU \subset U'$, $\tilde{A} = A'^*$ на $\mathfrak{D}(\tilde{A})$ и $A'^* \bar{A}^{-1} = E$, $A'^* U' = 0$). \tilde{A} имеет обратный. Действительно, пусть $\widetilde{A}\widetilde{f}=0$, где $\widetilde{f}\subset\mathfrak{D}\left(\widetilde{A}
ight)$, и, значит, согласно (3), $\tilde{f} = f + \tilde{A}^{-1}u + Bu$. Из равенства $\tilde{A} (f + \tilde{A}^{-1}u + Bu) = 0$ следует, что Af + u = 0. Так как элемент u ортогонален к Af (согласно (*)), то Af = 0 и u = 0 и, вследствие обратимости оператора A, f=0. Таким образом доказано, что из $\widetilde{Af}=0$ следует $\widetilde{f}=f+\overline{A}^{-1}u+u=0$. Используя непрерывность оператора B, легко показать, что 434

оператор \tilde{A} замкнут и, следовательно, \tilde{A}^{-1} замкнут. Так как \tilde{A}^{-1} замкнут и задан на всем H, то \tilde{A}^{-1} ограничен: $\|\tilde{A}^{-1}\| < \infty$. Итак, оператор \tilde{A} является корректным расширением оператора A.

Так же легко доказывается необходимость условия.

Заметим, что если \overline{A}^{-1} и B- вполне непрерывные операторы,

то \tilde{A}^{-1} также вполне непрерывен.

Сформулированную выше теорему можно применить к дифференциальным операторам, а именно, к вопросу о нахождении всех однородных линейных и корректных краевых условий для данного дифференциального оператора, рассматриваемого в области S n-мерного пространства. Эта теорема дает описание всех линейных множеств $\mathfrak{D}(\widetilde{A})$ функций, заданных в S, отображаемых рассматриваемым дифференциальным оператором на все H "корректным" образом. С точки зрения применений к теории дифференциальных уравнений интересно дать описание множеств $\mathfrak{D}(\widetilde{A})$ с помощью некоторых краевых условий на границе области S, которым должны удовлетворять все функции из $\mathfrak{D}(\widetilde{A})$ и только они.

Рассмотрим этот вопрос для описанных выше общих операторов \overline{A} , являющихся корректными расширениями A. Допустим, что существует оператор L_1 , отображающий $\mathfrak{D}(A'^*)$ на некоторое гильбертово пространство H_1 (в случае дифференциального оператора H_1 является пространством функций, заданных на границе области S) и обладающий свойствами: 1) $L_1(\mathfrak{D}(A) + \overline{A}^{-1}U) = L_1(\mathfrak{D}(\overline{A})) = 0$, 2) L_1 отображает взаимно-однозначно и взаимно-непрерывно U' на все

 H_1 : $L_1(U') = H_1$.

Допустим далее, что существует оператор L_2 , отображающий $\mathfrak{D}(A'^*)$ на некоторое гильбертово пространство H_2 (в случае дифференциального оператора H_2 является пространством функций, заданных на границе) и обладающий следующими свойствами: 1) $L_2(\mathfrak{D}(A)+U')=0$, 2) L_2 отображает взаимно-однозначно множество $\overline{A}^{-1}U$ на H_2 , причем, если ввести в множество $\overline{A}^{-1}U$ новое скалярное произведение $[\overline{A}^{-1}u,\overline{A}^{-1}u]=$ =(u,u) (где (u,u) — метрика в H), то L_2 отображает $\overline{A}^{-1}U$ на H_2 взаимно-непрерывно.

Найдем сейчас "краевое условие", соответствующее области определения $\mathfrak D$ ($\check A$) некоторого корректного расширения $\check A$ оператора A при

фиксированных операторах L_1 , L_2 и A.

Пусть $\tilde{f} = f + \overline{A}^{-1}u + Bu$, $f \in \mathfrak{D}(A)$, $u \in U$, — произвольный элемент, принадлежащий области определения $\mathfrak{D}(\tilde{A})$. Тогда, пользуясь свойствами оператора L_1 , получим:

$$L_1 \tilde{f} = L_1 (f + \bar{A}^{-1} u) + L_1 B u = B_1 u, \tag{4}$$

где $B_1 = L_1 B$. Оператор B_1 непрерывно отображает U в H_1 . Применяя к элементу \tilde{f} оператор L_2 , получим:

$$L_2 \tilde{f} = L_2 (f + Bu) + L_2 \overline{A}^{-1} u = Ku,$$
 (5)

где $K = L_2 \overline{A}^{-1}$. Оператор K отображает взаимно-однозначно и взаимнонепрерывно пространство U на все H_2 . Заметим, что оператор K один и тот же для всех расширений \widetilde{A} . Применяя к обеим частям (5) оператор K^{-1} , будем иметь:

$$K^{-1}L_2\tilde{f} = u \tag{6}$$

и, подставляя (6) в (4), получим:

$$L_1 \tilde{f} = B_1 K^{-1} L_2 \tilde{f} = Q L_2 \tilde{f}, \tag{7}$$

где $Q = BK^{-1}$ — оператор, непрерывно отображающий H_2 в H_1 . Условию (7) удовлетворяют, очевидно, все элементы из $\mathfrak{D}(\tilde{A})$ и только они. Следовательно, условие (7) является краевым условием, опи-

сывающим $\mathfrak{D}(\bar{A})$.

Обратно, любому краевому условию вида (7), или (что равносильно) любому непрерывному оператору Q, соответствует некоторая область определения $\mathfrak{D}(\tilde{A})$ (см. (7), (6), (5), (4), (3)), состоящая из всех элементов \tilde{f} , удовлетворяющих условию (7), и только из них.

> Поступило 7 11 1949