MATEMATUKA

н. в. попова

ОБ ОТОБРАЖЕНИЯХ, ОСУЩЕСТВЛЯЕМЫХ ИНТЕГРАЛАМИ ОЛНОГО КЛАССА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

(Представлено академиком М. В. Келдышем 27 1 1949)

Рассмотрим уравнение

$$\frac{dw}{dt} = P(w, t),\tag{1}$$

где P(w,t) есть функция комплексного переменного w и действительного переменного t, рациональная относительно w при всяком t, принадлежащем некоторому замкнутому интервалу [a,b], и удовлетворяющая следующим условиям.

I. Число m полюсов функции P(w,t) и порядок каждого полюса

не изменяются с изменением t.

II. Функции $\lambda_i(t)$ $(i=1,\ 2,\dots,m)$, представляющие подвижные полюсы P(w,t), и коэффициенты $A_{lk}(t)$ разложения P(w,t) по степеням разностей $w-\lambda_i(t)$ имеют на [a,b] непрерывные производные.

Пусть функция P(w,t) имеет в точке $w=\lambda_1(t)$ полюс порядка. $n_l>0$ и в бесконечности — полюс порядка $n_0>0$. Обозначим через $\alpha_{lk}(t)$ $(k=1,2,\ldots,n_l)$ корни уравнения

$$\left(\alpha_{l}(t)\right)^{n_{l}+1} = -\frac{1}{(n_{l}+1)A_{l0}(t)} \quad \left(A_{i0}(t) = \lim_{w \to \lambda_{l}(t)} P(w,t) \left(w - \lambda_{l}(t)\right)^{n_{i}}\right).$$

Если $n_0 > 1$, то через α_{0j} $(j=1,\ 2,\dots,\overline{n}_0-1)$ обозначим корни

$$(\alpha_0(t))^{n_0-1} = \frac{1}{(n_0-1)A_{0n_0}(t)} \qquad \left(A_{0n_0}(t) = \lim_{w \to \infty} \frac{P(w,t)}{w^{n_0}}\right).$$

Далее, обозначим через $\omega_{ik}(t,\tau)$ $(t<\tau)$ и $v_{ik}(t,\tau)$ $(t>\tau)$ интегралы уравнения (1), удовлетворяющие, соответственно, соотношениям:

$$\lim_{t \to \tau = 0} \omega_{ik}(t, \tau) = \lambda_{i}(\tau), \qquad \lim_{t \to \tau = 0} \frac{\frac{n_{i} + 1}{\sqrt{\tau - t}}}{\omega_{ik}(t, \tau) - \lambda_{i}(t)} = \alpha_{ik}(\tau), \qquad (2)$$

$$\lim_{t \to \tau + 0} \upsilon_{ik}(t, \tau) = \lambda_{i}(\tau), \qquad \lim_{t \to \tau + 0} \frac{\frac{n_{i} + 1}{\sqrt{\tau - t}}}{\upsilon_{ik}(t, \tau) - \lambda_{i}(t)} = \alpha_{ik}(\tau). \qquad (3)$$

$$\lim_{t \to \tau + 0} v_{tk}(t, \tau) = \lambda_i(\tau), \qquad \lim_{t \to \tau + 0} \frac{V_{\overline{\tau - t}}}{v_{ik}(t, \overline{\tau}) - \lambda_i(t)} = \alpha_{ik}(\tau). \tag{3}$$

Аналогично, если $n_0>1$, будем обозначать через $\omega_{0j}(t,\tau)$ $(t<\tau)$ и $v_{0j}(t,\tau)$ $(t>\tau)$ интегралы, для которых выполняются, соответственно, соотношения:

$$\lim_{t \to \tau - 0} \omega_{0j}(t, \tau) = \infty, \qquad \lim_{t \to \tau - 0} (\omega_{0j}(t, \tau)) = \omega_{0j}(t), \qquad (4)$$

$$\lim_{t \to \tau + 0} v_{0j}(t, \tau) = \infty, \qquad \lim_{t \to \tau + 0} (v_{0j}(t, \tau) \sqrt[n_0 - 1]{\tau - t}) = \alpha_{0j}(\tau). \tag{5}$$

Теорема 1. При любом $\tau \subset (a,b]$ уравнение (1) имеет единственный интеграл $\omega_{ik}(t,\tau)$ и при $n_0>1$ единственный интеграл $\omega_{0i}(t,\tau)$.

Аналогично, при любом $\tau \subset [a,b)$ уравнение (1) имеет единственный интеграл $v_{ik}(t,\tau)$ и при $n_0>1$ единственный интеграл $v_{0j}(t,\tau)$ *.

Теорема 2. Всякий интеграл w(t) уравнения (1), стремящийся $\kappa \lambda_i(\tau)$ при $t \Rightarrow \tau = 0$ $(\tau + 0)$, удовлетворяет одному из соотношений (2) ((3)) и, следовательно, совпадает с одним из интегралов $\omega_{ik}(t,\tau)(v_{ik}).$

Всякий интеграл, стремящийся к бесконечности при t
ightarrow au - 0 $(\tau + 0)$, удовлетворяет одному из соотношений (4) ((5)) и поэтому

совпадает с одним из интегралов $\omega_{0i}(t,\tau)$ (v_{0i}) .

Интегралов, не стремящихся к определенному пределу при $t \to \tau - 0$ $(\tau + 0)$, уравнение (1) не имеет.

Пусть t и ϑ — некоторые фиксированные числа, принадлежащие $[a,b],\ \vartheta\!>\! t.$ Обозначим через $L_{ik}(t,\vartheta)$ кривую $w=\omega_{ik}(t, au),\ t\!\leqslant\! au\!\leqslant\!\vartheta$ $(\omega_{lk}(t,t)=\lambda_{l}(t))$ и через $C_{lk}(\vartheta,t)$ — кривую $w=v_{lk}(\vartheta, au), t\leqslant au\leqslant artheta$ $(v_{ik}(\vartheta,\vartheta)=\lambda_i(\vartheta)).$

Аналогично, если $n_0>1$, определим кривые $L_{0j}(t,\vartheta)$ и $C_{0j}(\vartheta,t)$ при

помощи интегралов $\omega_{0j}(t,\tau)$ и $v_{0j}(t,\tau)$.

Теорема 3. Кривые $L_{ik}(t,\vartheta)$, $L_{0j}(t,\vartheta)$, $C_{ik}(\vartheta,t)$, $C_{0j}(\vartheta,t)$ (при ϑ , достаточно близком к t) - простые гладкие дуги Жордана. При различных і кривые L_{lk} (C_{lk}) не пересекаются, а при одинаковых і и различных k пересекаются только в точке $\lambda_i(t)$ $(\lambda_i(\vartheta))$. Кривые L_{0j} (C_{0j}) пересекаются только в бесконечности**.

Будем обозначать через $G(t,\tau)$ область, полученную из плоскости проведением разрезов по кривым $L_{ik}(t,\vartheta)$ $L_{0j}(t,\vartheta)$, $(\iota=1,2,\ldots,m;$ $k=1,\ 2,\ldots,n_i+1;\ j=1,2,\ldots,n_0-1)$ и через $H((t,\vartheta)-$ область, полученную из плоскости проведением разрезов по кривым $C_{ik}(\vartheta,t)$ и

Теорема 4. При д. достаточно близком к t, интеграл уравнения (1) $w=w(t,w_0,\vartheta)$ ($w(\vartheta,w_0,\vartheta)=w_0$), рассматриваемый, как функция начального значения w_0 , отображает взаимно-однозначно и конформно область $H_{w_*}(t,\vartheta)$ на область $G_w(t,\vartheta)$.

Для случая, когда функция P(w,t) имеет вид:

$$w\frac{\mu(t)+w}{\mu(t)-w}$$
, $|\mu(t)|=1$,

исследование отображения, осуществляемого интегралами уравнения (1), было проведено П. П. Куфаревым (1).

Физико-технический институт Томского государственного университета Поступило 27 I 1949

ШИТИРОВАННАЯ ЛИТЕРАТУРА

1 П. П. Куфарев, Уч. зап. Томск. гос. ун-та, № 1 (1946).

^{*} При $n_0=1$ интегралов, стремящихся к бесконечности при $t \Rightarrow au \pm 0$, не суще-** Кривые $L_{ik}(C_{ik})$ и $L_{0j}(C_{0j})$ также не пересекаются.