Доклады Академии Наук СССР 1949. Том LXV. № 3

MATEMATUKA

и. Е. БАЗИЛЕВИЧ

О ТЕОРЕМАХ ИСКАЖЕНИЯ И КОЭФФИЦИЕНТАХ ОДНОЛИСТНЫХ ФУНКЦИЙ

(Представлено академиком М. В. Келдышем 31 І 1949)

1. Рассмотрим класс Σ функций $F(\zeta) = \zeta + \alpha_0 + \frac{\alpha_1}{\zeta} + \ldots$, однолистных и регулярных в круге $|\zeta| > 1$, кроме полюса $\zeta = \infty$ не принимающих значения нуль, и класс S функций $f(z) = z + c_3 z^2 + \ldots$, однолистных и регулярных в круге |z| < 1. Основные результаты, полученные мной при исследовании этих функций, состоят в следующем.

Теорема 1. Если $F(\zeta) \subset \Sigma$, то при любых ζ_1 и ζ_2 из $|\zeta| > 1$ справедливо неравенство:

$$\left| \ln \frac{F(\zeta_1) - F(\zeta_2)}{\zeta_1 - \zeta_2} \right| \leqslant \ln \frac{|\zeta_1| |\zeta_2|}{\sqrt{|\zeta_1|^2 - 1}} \sqrt{|\zeta_1|^2 - 1} . \tag{1}$$

В частности, при $|\zeta_1| = |\zeta_2| = \rho > 1$ отсюда следуют неравенства

$$\frac{\rho^2 - 1}{\rho^2} \leqslant \frac{|F(\zeta_1) - F(\zeta_2)|}{|\zeta_1 - \zeta_2|} \leqslant \frac{\rho^2}{\rho^2 - 1} , \qquad (1')$$

содержащие неравенства Голузина (1) и Левнера (2).

Преобразованием $F(\zeta) = \frac{1}{f(1/\zeta)}$ получаем соответствующие неравенства для функций S, а также для подкласса S ограниченных функций. Следствием этого является усиление некоторых теорем Голузина.

Метод доказательства опирается на параметрическое представление некоторых подклассов функций Σ с помощью дифференциального уравнения Левнера (3).

2. Теорема 2. Если $f(z) \subset S$, то для любых пар (z_1, z_2) и $(f(z_1), f(z_2))$, подчиненных условиям $|z_1| = |z_2| = r < 1$ и $|f(z_1)| = |f(z_2)|$, справедливы точные неравенства:

$$\frac{1-r}{1+r}\left|\operatorname{tg}\frac{\arg z_1 - \arg z_2}{4}\right| \leqslant \left|\operatorname{tg}\frac{\arg f\left(z_1\right) - \arg f\left(z_2\right)}{4}\right| \leqslant \frac{1+r}{1-r}\left|\operatorname{tg}\frac{\arg z_1 - \arg z_2}{4}\right|. (2)$$

Знаки равенства имеют место только для

$$f^*(z_1) = \frac{z}{(1 - e^{-i\alpha_z})^2}$$
, $2\alpha = \arg z_1 + \arg z_2$.

Метод доказательства тот же.

Соответствующие неравенства получаются для функций класса Σ.

3. На основании теорем 1 и 2 доказывается

Теорема 3. Если функция $f(z) \subset S$, то при любых r, $0 \leqslant r \leqslant 1$ и $x \geqslant e^{\pi l^2 r}$ пересечение окружности |W| = x с областью D(r), на которую f(z) отображает $|z| \leqslant r$, имеет линейную меру l(r,x), не большую, чем пересечение той же окружности с областью $D^*(r)$, соответствующей функции $f^*(z) = \frac{z}{(1-z)^2}$, т. е.

$$l(r,x) \le 4 x \operatorname{arctg}\left(\frac{1+r}{1-r}\sqrt{\frac{r-x(1-r)^2}{x(1+r)^2-r}}\right),$$
 (3)

если $e^{\kappa/e}r \le x \le \frac{r}{(1-r)^2}$ и l(r,x) = 0 при $x > \frac{r}{(1-r)^2}$.

Отсюда легко получаются соответствующие предложения для функций класса Σ , а также для симметричных функций вида $F_s(\zeta) = \sqrt[s]{F(\zeta^s)}$ и $f_s(z) = \sqrt[s]{f(z^s)}$.

Следствием теоремы 3 является

Теорема 4. Каковы бы ни были функция $f_s(z)$ и число $\alpha \gg 0$, справедлива следующая оценка полярного момента площади $\sigma_s(r)$ области $D_s(r)$:

$$I_{\alpha} = \int_{0}^{r} \rho \, d\rho \int_{0}^{2\pi} |f_{s}(\rho e^{i\phi})|^{\alpha} |f'_{s}(\rho e^{i\phi})|^{2} \, d\phi \leq$$

$$\leq \int_{0}^{r} \rho^{\alpha+1} d\rho \int_{0}^{2\pi} \frac{|1+\rho^{s} e^{is\phi}|^{2} \, d\phi}{|1-\rho^{s} e^{is\phi}|^{\frac{4+2\alpha}{s}+2}} + C_{s}(r, \alpha), \qquad (4)$$

где $C_s(r,\alpha)$ — положительная величина, стремящаяся к нулю при фиксированном α и $r \to 1$. Оценка (4) отличается от точной не более, чем на $C_s(r,\alpha)$.

В частности, имеем оценки площадей:

$$\sigma(r) = \pi \sum_{n=1}^{\infty} n \mid c_n \mid^2 r^{2n} \leqslant \pi r^2 \frac{1 + 4r^2 + r^4}{(1 - r^2)^4} + c(r), \tag{4}$$

где $c(r) \rightarrow 0$ при $r \rightarrow 1$;

$$\sigma_2(r) = \pi \sum_{n=1}^{\infty} n \mid c_n \mid^2 r^{2n} \leq \pi r^2 \frac{1+r^4}{(1-r^4)^2} + 13r^2 (1-r^2). \tag{4^2}$$

Далее, так как

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f_{s}(re^{i\varphi})|^{2} d\varphi = \sum_{n=1}^{\infty} |c_{n}|^{2} r^{2n} = 2 \int_{0}^{r} \sum_{n=1}^{\infty} n |c_{n}|^{2} e^{2n-1} d\varphi =$$

$$= 2 \int_{0}^{r} \frac{\sigma_{s}(\rho)}{\pi \rho} d\rho$$

И

$$\frac{1}{2\pi}\int_{0}^{2\pi}|f_{s}(re^{i\varphi})|d\varphi=\frac{1}{2\pi}\int_{0}^{2\pi}|f_{2^{s}}(\sqrt{r}e^{i\varphi/2})|^{2}d\varphi,$$

то из теоремы 4 следует

Теорема 5. Если функция $f_s(z) \subset S$, то справедливы следующие оценки интегралов:

$$\int_{0}^{2\pi} |f_{s}(re^{i\phi})|^{2} d\phi \leqslant \int_{0}^{2\pi} \frac{r^{2}d\phi}{|1 - r^{s}e^{is\phi}|^{4/s}} + \text{const},$$

$$\int_{0}^{2\pi} |f_{s}(re^{i\phi})|^{2} d\phi \leqslant \int_{0}^{2\pi} \frac{r d\phi}{|1 - r^{s}e^{is\phi}|^{2/s}} + \text{const},$$
(5)

где константы легко оцениваются.

Так как при разложении $f(z)\subset S$ в ряд $f(z)=z+c_2z^2+\dots$ имеем оценку Литтльвуда

$$\mid c_n \mid r^n \leqslant \frac{1}{2\pi} \int_0^{2\pi} \mid f(re^{i\varphi}) \mid d\varphi = 2 \int_0^{\sqrt{r}} \frac{\sigma_2(\rho)}{\pi \rho} d\rho,$$

то на основании оценки (42) площади $\sigma_2(\rho)$ получаем:

$$|c_n| < 1,674n, n > 4;$$

 $|c_n| < 1,52 n, n > 10;$
 $|c_n| < 1,38 n, n > 100.$ (6)

Полагая $\alpha_n=\sup |c_n|$ в семействе S, будем иметь: $\varlimsup_{n\to +\infty}\frac{\alpha_n}{n}\leqslant \frac{e}{2}=1,359.$. .

Замечание. Константа $e^{\pi/e}$ в теореме 3 не является наилучшей, но она не может быть заменена числом c<1, как показывает рассмотрение линий уровня функций W=z и $W=\frac{z}{(1-z)^2}$.

Поступило 29 I 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. М. Голузин, Матем. сб., **19** (61), 183 (1946). ² Ph. Frank u. K. Löwner, Math. Z., **3**, 78 (1919); И. Базилевич, Матем. сб., **2** (44), 4 (1937) ³ К. Löwner, Math. Ann., **89** (103) (1923); И. Базилевич, Матем. сб., **1** (43):3 (1936); **2** (44):4 (1937).