Доклады Академии Наук СССР 1949. Том LXV, № 2

МИНЕРАЛОГИЯ

п. н. чирвинский

ВЛИЯНИЕ ВОССТАНОВИТЕЛЬНЫХ И ОКИСЛИТЕЛЬНЫХ ПРОЦЕССОВ НА СИСТЕМУ FeO — MgO — SiO₂, ОЛИВИН — ПИРОКСЕН ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ

(Представлено академиком Д. С. Белянкиным 12 1 1949)

Ключом к пониманию системы $FeO-MgO-SiO_2$, как известно, является система $MgO-SiO_2$. Она классически изучена Боуэном и Андерсеном (4), исправлялась в деталях Грейгом и В. Д. Никитиным (2) *. Для петрографа в ней исключительный интерес представляет взаимоотношение форстерита Mg_2SiO_4 (оливина) и клиноэнстатита $MgSiO_3$ (пироксена).

В настоящей заметке я не буду вдаваться в какую-либо дискуссию, а остановлюсь на некоторых полузабытых или забытых фактах, очень интересных в вопросах генетической связи оливин — пироксен в широком смысле этих слов. Здесь уже центром внимания должна явиться судьба закиси или закись — окиси железа (магнетита) с условиями восстановления или окисления в расплаве системы FeO — MgO — SiO₂ (5).

В хондритах и мезосидеритах мы имеем сопряженное нахождение пироксенов и оливина, в основных и особенно ультраосновных земных изверженных породах.

Такую сопряженность в названных метеоритах впервые по достоин-

ству оценил Добрэ, который разъяснил ее серией опытов (6).

Он отметил, что в сплаве наблюдаются кристаллы или скелеты бронзита. "Восстановление железа из силиката ведет, повидимому, лишь к тому, что увеличивается количество энстатита за счет оливина". "Расположение обоих минералов заслуживает быть оговоренным особо". "Обычно оливин, если он присутствует, располагается поверху. в виде кристаллической корочки, в то время как внутренняя часть состоит из длинных кристалликов энстатита". Таким образом, оба минерала "располагаются по своей степени плавкости...". "Прибавление $15^{0}/_{0}$ кремнекислоты к оливину, что должно бы перевести его целиком в метасиликат, при плавлении массы между углями вызвало образование сплава с оливином вверху и с волокнистым пироксеном внутри".

В случае, когда Добрэ плавил в графитовом тигле, сплав превращался в массу кристаллического пироксена, в который были вкраплены выделения металлического железа (в оригинале дан рисунок). Особенно удачны оказались опыты, когда навеска из оливина и лерцолита была большой (до 12 кг). В этом случае железо было выделено и анали-

^{*} Далее, сюда же относятся работы Аллена, Райта и Клемента (1906), Пешля (1907), Гауке (1910), П. И. Лебедева (1911), Шумовой — Долеано (1914) и некоторые другие.

зировано. Оно оказалось никельсодержащим (никель выплавился, очевидно, из силикатов $\mathrm{Ni_2SiO_4}$ и $\mathrm{NiSiO_3}$, изоморфно подмешанных в молекулах оливина и пироксенов) (7):

Fe						89,96
Ni						1,16
Co						следы
Cr						1,60
Mn						0,66
Cu			-			0,11
C c	Вяз	3.				1,73
C c	воб	õ.			,	26,1
Si						2,30
S.						следы
						100 50
						100,73

Для сравнения приведу два анализа овифакского (уифакского) железа, повидимому, восстановленного из базальтов (3):

					1	11
Fe					93,16	84,49
Ni					2,01	2,48
Co					0,80	0,07
Cu	-				0,12	0,27
S	٠	٠	٠		0,41	1,52
C		٠	٠	,	2,34	10.16
Р	-				0,32	0,20
CI	٠		٠		0,02	0,72
					99,18	100,91

В других анализах содержалось металлического никеля: 1,64; 1,24; 1.19; 2,65; 2,16; 1,98; 2,13; 1,74; 1,82; 1,39; $1,60^{\circ}/_{\circ}$.

Добрэ подметил, что плавление оливина в тех же условиях дает тоже некоторое количество свободного железа, однако часть его остается невосстановленной.

Можно итти и обратным путем: если накаливать железо, содержащее кремний и магний, в слабо окисляющей атмосфере, то можно вызвать ошлакование его с выделением кристалликов оливина. Если при этом кремнезема будет достаточно, может произойти и выделение пироксена. Такого рода явления (особенно образование железного оливина — файялита) уже наблюдались и в металлургической практике. В этих замечательных опытах мы можем видеть зародыш учения о генетической классификации метеоритов по степени их окисления, которую развили в своих работах Wahl и Prior.

Перейду к более новому времени, именно, к опытам В.И.Искюля (1). Он показал, что при доступе кислорода воздуха при прокаливании файялитового компонента в оливине происходит реакция

$$Fe_2SiO_4 + O \rightarrow Fe_2O_3 + SiO_2$$

т. е. освобождается кремнезем, который присоединяется к форстеритовому компоненту и дает метасиликат по уравнению

$$Mg_2SiO_4 + SiO_2 \rightarrow 2MgSiO_3$$
.

Приблизительные количества образовавшегося из исследованных им оливинов метасиликата магния были таковы:

Из форстерита Везувия (FeO 3,89%)........ 40% Из оливина Гогенфельс в Баварии (FeO 7,19%). 7,50% Из глинкита, озеро Иткуль, Ю. Урал (FeO 17,91%) 16—17%

Таким образом, опыты Добрэ и В. И. Искюля показывают, что из нормального оливина как путем восстановления, так и путем окисления (в обоих случаях воздействию подвергается файялитовая молекула) возможно получение добавочного количества пироксена: в первом случае из молекулы оливина удаляется железо в металлическом виде, во втором — в виде окиси (Fe_2O_3), избыточное же содержание кремнезема дает при этом метасиликат (а может быть, в некоторых случаях и свободную кремнекислоту). Метасиликат этот должен обогащаться магнием. Для метеоритных магм это может быть особенно ясно доказано для крайних типов по содержанию в них металлического никелистого железа.

Молотовский государственный университет им. А. М. Горького

Поступило 24 XII 1948

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Искюль, Экспериментальные исследования в области химической конституции силикатов, Хлориты, П., 1917, стр. 81—35. ² В. Д. Никитип. Изв. сект. физ.-хим. анализа. 16. в. 3, 29 (1948). ³ О. В. Вöggild, Mineralogia Groenlandica, Кјобепћачи, 1905, р. 20. ⁴ N. L. Bowen and O. Andersen, Am. J. Sci., (4), 37, 487 (1914). ⁵ N. L. Bowen and J. F. Schairer, Am. J. Sci., 29, 151 (1935). ⁶ A. Daubrée, C. R., 62, 200, 669 (1864); Expériences synthétiques relatives aux météorites, Paris, 1868, p. 65; Etudes synthétiques de géologie expérimentale, Paris, 1879—1880; то же в нем. пер., стр. 398—411. ⁷ J. N. L. Vogt, Econ. Geology, 18, No. 4, 307 (1923).