Доклады Академии Наук СССР 1949. Том LXV, № 2

MATEMATUKA

а. в. погорелов

ОДНА ОБЩАЯ ТЕОРЕМА ЕДИНСТВЕННОСТИ ДЛЯ БЕСКОНЕЧНЫХ ВЫПУКЛЫХ ПОВЕРХНОСТЕЙ

(Представлено академиком С. Н. Бернштейном 20 1 1949)

Мы будем рассматривать выпуклые поверхности в n-мерном евклидовом пространстве E^n . Под выпуклой поверхностью в E^n мы понимаем связное открытое множество на границе выпуклого тела с внутренними точками; границу бесконечного выпуклого тела будем называть бесконечной выпуклой поверхностью.

Пусть F_1 и F_2 — две выпуклые поверхности в E^n , имеющие общую точку P; h_1 (n) и h_2 (n) — значения опорных функций поверхностей на единичной сфере, если за начало координат принять точку P.

Мы скажем, что поверхности F_1 и F_2 касаются в точке \check{P} сильно внутренним образом, если существует единичный вектор \mathfrak{n}_0 такой, что

$$h_1(\mathbf{n}_0) = h_2(\mathbf{n}_0)^{\dagger} = 0,$$

а для всех n, достаточно близких n_0 , выполняется неравенство

$$|h_1(\mathbf{n}) - h_2(\mathbf{n})| > c |\mathbf{n} - \mathbf{n}_0|^2$$
,

где c — постоянная больше нуля *.

Мы будем говорить, что выпуклые поверхности F_1 и F_2 допускают сильное внутреннее касание, если одну из них параллельным переносом можно так расположить относительно другой, чтобы в некоторой их общей точке P они касались сильно внутренним образом.

Теорема 1. Пусть F_1 и F_2 —бесконечные выпуклые поверхности в E^n , имеющие одно и то же сферическое изображение ω , которое вместе с границей расположено на единичной полусфере $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$, $x_n > 0$.

Если значения опорных функций поверхностей F_1 и F_2 на границе ω совпадают, то либо поверхности совпадают, либо они допускают сильное внутреннее касание.

Доказательство. Обозначим h_1 (n) и h_2 (n) значения опорных функций поверхностей F_1 и F_2 для единичных векторов n, концы которых принадлежат ω .

Если $h_1(\mathbf{n})=h_2(\mathbf{n})$ для всех \mathbf{n} из ω , то поверхности F_1 и F_2 совпадают. Если же поверхности не совпадают, то найдется вектор \mathbf{n}_0 такой, что $h_1(\mathbf{n}_0) \neq h_2(\mathbf{n}_0)$, пусть, для определенности, $h_2(\mathbf{n}_0) > h_2(\mathbf{n}_0)$.

^{*} Геометрический смысл сильного внутреннего касания поверхностей в точке P состоит в том, что достаточно малая окрестность точки P одной из поверхностей содержится существенно внутри другой поверхности.

Обозначим $\overline{\omega}$ максимальную связную область на единичной сфере содержащую $\mathbf{n_0}$, в которой $h_1(\mathbf{n}) > h_2(\mathbf{n})$.

Введем в рассмотрение вектор-функцию ф (п), определенную в об-

ласти о равенством:

$$r = \varphi(\mathfrak{n}) = \frac{\mathfrak{n}}{h_1(\mathfrak{n}) - h_2(\mathfrak{n})}.$$

Интерпретируя эту функцию геометрически, получим некоторое n-1-мерное многообразие Φ в E^n . При достаточно малом k многообразие Φ расположено внутри конуса V $x_n^2 = k (x_1^2 + x_2^2 + \dots + x_{n-1}^2), x_n > 0$, вне шара радиуса inf $\frac{1}{h_1(n)}$.

Рассечем многообразие Φ плоскостью $x_n = c$ и ту часть его, которая лежит со стороны $x_n < c$, обозначим Φ . Сместим параболоид $x_n = x_1^2 + x_2^2 + \ldots + x_{n-1}^2$ в сторону $x_n < 0$ на столько, чтобы часть конуса V, расположенная со стороны $x_n < c$, была внутри параболоида.

Теперь будем аффинно «прижимать» параболонд к плоскости $x_n=c.$ В некоторый момент параболонд коснется многообразия $\overline{\Phi}$

в некоторой точке X_0 .

Проведем в этой точке касательную плоскость π к параболоиду. Она, очевидно, будет опорной плоскостью для $\overline{\Phi}$. Плоскость π не проходит через начало координат. Пусть $\mathbf{r}=\psi(\mathbf{n})=\frac{\mathbf{n}}{\mathbf{a}\mathbf{n}}$, где \mathbf{a} — некоторый вектор, уравнение плоскости π .

Если обозначить \mathbf{n}_0 единичный вектор, направленный в точку X_0 , то для всех \mathbf{n} , достаточно близких к \mathbf{n}_0 , выполняется неравенство

$$|\varphi(\mathbf{n}) - \psi(\mathbf{n})| \geqslant c_n |\mathbf{n} - \mathbf{n}_0|^2,$$
 (*)

где c_1 — постоянная больше нуля, и равенство достигается при $\mathbf{n}=\mathbf{n}_0$.

Подставляя в неравенство (*) значения функций $\varphi(\mathbf{n})$ и $\psi(\mathbf{n})$ и замечая, что $h_1(\mathbf{n}_0)-h_2(\mathbf{n}_0)\neq 0$ и $\mathbf{an}_0\neq 0$, приходим к неравенству

$$| an + h_2(n) - h_1(n) | \gg c_2 | n - n_0|^2,$$
 (**)

в котором равенство при $\mathbf{n}=\mathbf{n}_0$ достигается.

Сместим поверхность F_1 параллельно себе на вектор a, тогда опорная функция ее будет $h_1{}'(\mathbf{n}) = h_1(\mathbf{n})$ — $a\mathbf{n}$, и неравенство (**) дает

$$|h_2(\mathbf{n}) - h_1'(\mathbf{n})| \gg c_2 |\mathbf{n} - \mathbf{n}_0|^2.$$

Но это значит, что поверхности ${\cal F}_1$ и ${\cal F}_2$ допускают сильное внутреннее касание.

Теорема 1 доказана.

Пусть $\pi(\mathbf{n})$ — опорная плоскость тела K, частью границы которого является поверхность F. Проведем плоскость $\pi_{\delta}(\mathbf{n})$, параллельную $\pi(\mathbf{n})$, на расстоянии δ от нее так, чтобы она пересекала тело K (δ достаточно мало). Пусть $D_{\delta}(\mathbf{n})$ — пересечение тела K с плоскостью $\pi_{\delta}(\mathbf{n})$.

Предел последовательности тел $\frac{1}{V\,\overline{28}}\,D_\delta\,(\mathbf{n})$ при $\delta\to 0$, есла он существует, называется индикатрисой Дюпена поверхности F в направлении \mathbf{n} .

Теорема 2. Пусть F_1 и F_2 — две бесконечные регулярные поверхности в Еп, убовлетворяющие условиям:

а) обе поверхности имеют одно и то же сферическое изображение в расположенное вместе с границей на одной полусфере;

б) опорные функции поверхностей F_1 и F_2 на границе области ω

конечны и равны;

в) индикатрисы Дюпена одинаковых направлений либо равны, либо одну из них нельзя поместить внутрь другой параллельным переносом.

Tогда поверхности F_1 и F_2 совпадают.

Теорема 2 следует из теоремы 1.

Tеорема 3. Π усть Φ $(\alpha_1, \alpha_2, \ldots, \alpha_{n-1}, \mathbf{n}) - n p o u з в ольная функ$ ция единичного вектора $\mathbf n$ и численных переменных $\alpha_1, \alpha_2, \ldots, \alpha_{n-1},$ определенная для $\mathbf n$ из $\mathbf w$ и $0 \leqslant \alpha_1 \leqslant \alpha_2 \leqslant \ldots \leqslant \alpha_{n-1},$ удовлетворяющая условию: если $\Phi(\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \mathbf{n}) = \Phi(\beta_1, \beta_2, \dots, \beta_{n-1}, \mathbf{n}),$ то либо $\alpha_1 = \beta_1, \quad \alpha_2 = \beta_2, \dots, \quad \alpha_{n-1} = \beta_{n-1}, \quad \text{либо} \quad \text{в ряду величин} \quad \alpha_1 - \beta_1, \\ \alpha_2 - \beta_2, \dots, \quad \alpha_{n-1} - \beta_{n-1} \quad \text{есть хотя бы одна перемена знака.}$

Если сферическое изображение в бесконечной регулярной поверхности Р можно расположить вместе с границей на одной полусфере, то эта поверхность определяется однозначно заданием ее опорной функции на границе ω и значений $\varphi(\mathbf{n})$ функции $\Phi(R_1,R_2,\ldots,R_{n-1},\mathbf{n})$ внутри ω , где R_1,R_2,\ldots,R_{n-1} главные радиусы кривизны поверхности F, расположенные в порядке возрастания.

В частности, бесконечная выпуклая поверхность в E^n определяется однозначно заданием опорной функции на границе ω ее сферического изображения и значениями любой элементарной симметрической функции главных ради усов кривизны в функции нормали

к поверхности.

Теорема 3 следует из теоремы 2.

Поступило 20 1 1949