ГЕОФИЗИКА

С. Ф. РОДИОНОВ и А. Л. ОШЕРОВИЧ

СПЕКТРОФОТОМЕТР С ВТОРИЧНО-ЭЛЕКТРОННЫМ УМНОЖИТЕЛЕМ ДЛЯ ОЗОНОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ

(Представлено академиком А. Н. Терениным 9 X11 1948)

Примененный рядом исследователей (¹) оптический метод определения толщины слоя озона в атмосфере основан на измерении на поверхности Земли интенсивности I_{λ} узкой полосы (10—15 Å) солнечного спектра в пределах полосы Гартлея (2200—3200 Å). При этом используется известное уравнение Бугэ:

$$I_{\lambda} = I_{\lambda}^{0} e^{-\alpha x \mu - \beta m - \delta m}, \tag{1}$$

где I_{λ}^{0} — интенсивность за пределами атмосферы; x — толщина озонного слоя; α — коэффициент поглощения озона; β — коэффициент ослабления вследствие релеевского рассеяния; δ — коэффициент ослабления вследствие релеевского рассеяния; δ — коэффициент ослабления вследствие рассеяния на взвешенных частицах (аэрозоли); μ и m — относительные длины пути луча через слой озона и через всю атмосферу, соответственно; величины m и μ нормируются так, что при Z = 0 $m = \mu = 1$, где Z — зенитное расстояние солнца. В области изменений Z от 0 до 70° можно положить $m = \mu = \sec Z$. Для вычисления толщины слоя озона необходимо знание коэффициентов α , β и δ .

Значения коэффициента а в зависимости от длины волны известны из лабораторных измерений, величины же β и 8 зависят от атмосферных условий и при точных измерениях должны быть определены экспериментально. Если, как это сделал Добсон, измерять отношение интенсивностей I_{λ1}/I_{λ2} и I_{λ2}/I_{λ2} света длин волн солнечной радиации, находящихся в соотношении $\lambda_1 < \lambda_2 < \lambda_3$, где λ_1 сильно поглощается озоном, и считать δ не зависящим от длины волны в данной области спектра, то, на основании соответствующих уравнений Бугэ, можно определить как x, так и β. Как показал один из авторов этой статьи (2), пои более точном решении задачи следует учитывать имеющую место в действительности зависимость от длины волны коэффициента б, обусловленную селективным ослаблением света аэрозолями, которые постоянно в большем или меньшем количестве присутствуют в атмосфере до высот 6-7 км и действие которых особенно резко проявляется при больших зенитных расстояниях солнца. При не слишком больших зенитных расстояниях решение уравнений Бугэ, составленных для трех длин волн λ₁, λ₂ и λ₃, приводит к следующей формуле для толщины слоя озона:

$$x = \frac{S_0 - S - k \left(L - L_0\right)}{\sec Z \left(\alpha_1 - \alpha_2 - k\alpha_1\right)},$$
(2)

где
$$S_0 = \lg \frac{I_{\lambda_1}^0}{I_{\lambda_2}^0}$$
, $L_0 = \lg \frac{I_{\lambda_3}^0}{I_{\lambda_3}^0}$ при $\sec Z = 0$; $S = \lg \frac{I_{\lambda_1}}{I_{\lambda_3}}$, $S = \lg \frac{I_{\lambda_3}}{I_{\lambda_3}}$,
665

 $k = \frac{\lambda_1^{-4} - \lambda_2^{-4}}{\lambda_2^{-4} - \lambda_2^{-4}}$, α_1 и α_2 — значения коэффициентов поглощения озона

для длин волн λ_1 и λ_2 . Величины S_0 и L_0 представляют, таким образом, отношение интенсивностей света длин волн λ_1 , λ_2 и λ_3 за пределами атмосферы и являются постоянными для любого озонометрического метода.

Добсоном был сконструирован спектрофотометр (³), в котором две длины волны солнечного спектра, выделяемые монохроматором двойного разложения и модулируемые вращающимся диском, попадали попеременно на окно фотоэлемента, соединенного с усилителем переменного тока; такое устройство позволяет непосредственно измерять отношение интенсивностей двух длин волн, компенсируя с помощью специального оптического клина более интенсивную длину волны так, чтобы ток на выходе усилителя был равен нулю. Измеряя отношение интенсивностей для двух пар длин волн $I_{\lambda_1}/I_{\lambda_2}$ и $I_{\lambda_3}/I_{\lambda_2}$, где λ_1 поглощается озоном, а λ_2 и λ_3 практически не поглощаются, Добсон мог с достаточной для метеорологических целей точностью при помощи своего спектрофотометра определять содержание озона в любой момент времени согласно формуле (2). Однако для целого ряда задач (в частности, для исследований так называемого эффекта аномальной прозрачности (⁴), измерения озона в условиях белых ночей и т. п.) необходимо радикальное увеличение чувствительности метода. Для этой цели нами было разработано описанное ниже фотометрическое устройство с вторично-электронным умножителем, которое и было нами применено в видоизмененном спектрофотометре Добсона для измерения озона.

В качестве оптической части прибора нами была использована без существенных изменений оптическая система Добсона*, состоящая из кварцевого монохроматора двойного разложения и системы щелей, выделяющих три длины волны: $\lambda_1 = 3128$ Å, $\lambda_2 = 3318$ Å и $\lambda_3 = 4468$ Å, и описанная в соответствующих работах (3). Модуляция светового потока осуществлялась с частотой 24 герца вращающимся диском с прорезями, расположенными таким образом, чтобы в одну половину периода в окно ФЭУ попадал свет длины волны λ_2 , а в другую половину — свет длины волны λ_1 или λ_3 . Фотометрическое устройство состояло из вторично-электронного умножителя и усилителя переменного тока. В качестве ФЭУ нами была применена сурьмяно-цезиевая трубка Кубецкого с окном-мембраной, с темновым током 5·10⁻⁹ а при V_{раб} = 1000 в. Кривая спектральной чувствительности такого умножителя будет дана в другом месте. Питание ФЭУ осуществлялось выпрямителем со стабилизирующим устройством. Трехкаскадный усилитель на лампах 6Ж7—6Ж7—6С5 с отрицательной обратной связью имел в используемом интервале частот почти горизонтальную частотную характеристику, так что случайные изменения частоты модуляции светового потока не вызывали изменения величины выходного сигнала. В выходную цепь усилителя включали механический коммутатор, вращающийся на одной оси с модуляционным диском. При равенстве интенсивностей обеих длин волн, попадающих на катод ФЭУ, ток через гальванометр, включенный в цепь коммутатора, равен нулю. Принципиальная схема фотоэлектрической части устройства дана на рис. 1.

Подобное фотометрическое устройство позволяет измерять световые потоки на два — три порядка меньшие, чем потоки, измеряемые

^{*} Оптическая часть спектрофотометра Добсона была нам любезно предоставлена Главной геофизической обсерваторией, по поручению которой велась настоящая работа. Пользуемся случаем выразить благодарность Главной геофизической обсерватории.

фотометром Добсона, так как в последнем увеличение токового усиления электрометрического каскада ограничивается значением частоты модуляции светового потока и величиной входной емкости лампы-электрометра; в лучшем случае величина токового усиления электрометрического каскада в фотометре Добсона может быть доведена до 104.

Рис. 1. Принципиальная схема фотоэлектрической части спектрофотометра

Кроме того, следует отметить, что при применении ФЭУ отпадает необходимость в специальных мерах для уменьшения микрофонного эффекта, а также в герметизации и осушении устройства.

Величины S и L (равенство (2)) связаны с непосредственными отсчетами прибора S' и L', дающими положение оптического клина, при котором достигается равенство нулю тока на выходе, соотношениями:

$$S' = -\gamma S + A$$
, $L' = -\gamma L + B$.

Здесь γ зависит от оптических свойств клина, а величины A и B от спектральной чувствительности ФЭУ и гетерохромных характеристик оптической системы. Как нетрудно видеть, величины A и B

представляют собой постоянные, исключающиеся при применении формулы (2).

Измерение содержания озона с помощью описанного спектрофотометра и определение постоянных метода (S_0 и L_0 , уравнение (2)) производилось в мае — июне 1948 г. в районе г. Терийоки. Производи-

Рис. 2. Режим работы спектрофотометра при эталонном источнике света

лись измерения прямого солнечного света и рассеянного света зенита. При измерениях прямого солнечного света перед входной щелью прибора в целях равномерного освещения щели помещалась матовая кварцевая пластинка; вследствие большой чувствительности фотометра при измерениях в прямом солнечном свете применялось общее ослабление светового потока нейтральным фильтром, помещаемым перед гелиостатическим устройством, служащим для юстировки изображения солнца на щель прибора; кроме того, рабочее напряжение ФЭУ понижалось на одну треть его нормальной величины.

Рис. 2, изображающий значения величины S', полученные для эталонного источника (лампа накаливания) в зависимости от времени с момента включения прибора, дает представление о разбросе измеряемой величины, обусловленном колебаниями нуля вследствие некоторого несовершенства механической коммутации, флуктуаций темнового тока ФЭУ и т. п.

На рис. З даны зависимости величин S' и L' от sec Z в прямом солнечном свете для одного из дней наблюдений. Точки достаточно

Рис. 3. Зависимость показаний прибора (величины S' и L') от sec Z

хорошо ложатся на прямые, начальные ординаты которых дают после соответствующего пересчета величины

$$S_0 = \lg rac{I_{3128}^0}{I_{33,8}^0}, \ \ L_0 = \lg rac{I_{4468}^0}{I_{3318}^0},$$

входящие в основную формулу (2).

На рис. 4 дан дневной ход содержания озона для двух дней, различающихся метеорологическими условиями. Хотя параллельные высотные метеорологические измерения и не производились, но о резком различии атмосферных условий для этих двух дней свидетельствуют внешние атмосферные показатели. Кривая *I* получена в условиях значительной замутненности атмосферы (хотя и в отсутствие

облачности) и обнаруживает типичное для данного места измерений изменение содержания озона в течение дня. Кривая 2 представляет редкий для данного места случай исключительной прозрачности атмосферы.

Рис. 4. Дневные вариации общего содержания озона: 1—13 июня 1948 г., 2—21 июня 1948 г.

Дальнейшие озонометрические наблюдения с описанным прибором, а также исследования поглощения атмосферными аэрозолями и т. д. при больших зенитных расстояниях авторы на деятся осуществить в ближайшее время в высокогорных условиях.

Научно-исследовательский физический институт Поступило Ленинградского государственного университета 29 IX 1948 им. А. А. Жданова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П.Гетц, Атмосферный озон, 1934. ² С.Ф. Родионов, Диссертация, Физический инт АН СССР, 1942; С.Ф. Родионов, Е.Н. Павлова, Н. Т. Рейнов и Е. В. Рдултовская, Изв. АН СССР, сер. географ. и геофиз., № 4, 155 (1942). ³ G. M. B. Dobson, Proc. Phys. Soc., 43, 324 (1951). ⁴ С.Ф. Родионов, Е. Н. Павлова и Н. Н. Ступников, ДАН, 19, 53 (1938). 668