Доклады Академин Наук СССР 1949. Том LXIV, № 5

МАТЕМАТИКА

о. локуциевский

ОБ ОТКРЫТЫХ ОТОБРАЖЕНИЯХ ПЛОСКИХ КОМПАКТОВ*

(Представлено академиком А. Н. Колмогоровым 17 XII 1948)

Непрерывное отображение f топологического пространства X на топологическое пространство Y называется открытым, если образ каждого открытого в X множества есть множество, открытое в Y; квазимонотонным, если, каков бы ни был континуум $C \subseteq Y$ и какова бы ни была компонента K его прообраза, всегда f(K) = C.

Хопфу принадлежит следующая

Теорема. Открытое отображение компакта есть отображение квазимонотонное.

Доказательство содержится в (²).

Вопрос о возможности открытого отображения одного данного множества X на другое Y принадлежит к труднейшим в топологии даже в том случае, когда X и Y являются простейшими геометрическими фигурами. Так, до сих пор остается неизвестным, можно ли при 2 отобразить открыто <math>p-мерный куб на q-мерный. Задача эта, имеющая важные приложения, например в теории непрерывных групп, для p=2 была впервые решена Хопфом ценою преодоления больших трудностей: оказалось, что квадрат нельзя открыто отобразить на q-мерный куб, q>2. Другое, также сложное доказательство этого факта дано в (²). Из теорем, доказанных в настоящей заметке, следует очень простое доказательство указанного результата Хопфа. При этом обнаруживается, что невозможно не только открытое, но даже и квазимонотонное отображение квадрата на q-мерный куб, q>2, причем из свойств куба при этом оказывается существенным лишь то, что он является континуумом, содержащим некоторую очень простую одномерную фигуру ωT , которая сейчас будет определена.

Назовем треногою всякий континуум, гомеоморфный букве T (т. е., например, сумме отрезка $-1/2 \ll x \ll 1/2$ оси абсцисс и отрезка $0 \ll y \ll 1$ оси ординат). Рассмотрим в трехмерном пространстве плоскости z=1/n и в каждой из них возьмем треногу T_n , состоящую из только что упомянутых двух отрезков. Сумма этих треног и такой же треноги T_0 , построенной в плоскости z=0, есть компакт и обозначается через ωT (очевидно, ωT есть топологическое произведение треноги на компакт, состоящий из точек 0 и 1/n, n=1, 2, . . . ,

числовой прямой).

Tеорема 1. Если плоский компакт X может быть квазимонотонно отображен на треногу T, то X состоит лишь из конечного числа компонент.

^{*} Настоящая работа сделана под руководством П. С. Александрова

Теорема 2 (основная). Никакой плоский компакт не может быть квазимонотонно отображен на компакт, содержащий топологический образ множества ωТ.

Отсюда и из определения квазимонотонности вытекает

Следствие. Если хоть одна компонента данного компакта Х гомеоморфна плоскому множеству, то компакт Х не может быть квазимонотонно отображен ни на какой континуум, содержащий топологический образ множества вТ (в частности, на KV6).

В этом следствии, очевидно, содержится невозможность откры-

того отображения плоского компакта на q-мерный куб, $q>\bar{2}$.

Прежде чем приступить к доказательству теоремы 1, сделаем несколько замечаний (для удобства вместо плоскости рассматриваем

двумерную сферу S^2).

1°. Пусть $\{F_n\}$ есть последовательность континуумов, лежащих в S^2 , причем существует It $F_n = F_0$. Если $F_0'' \subseteq F_0$ есть континуум такой, что $F_0 \vee F_0'' \ne \Lambda$, но $F_n \cap F_0'' = \Lambda^*$ при любом n, то все F_n (кроме, быть может, конечного числа) принадлежат одной и той же компоненте $S^2 \setminus F_0$ ". Граница этой компоненты совпадает с F_0 ".

 2° . Пусть $\Gamma \subseteq S^2$ есть гомеоморфный образ окружности и точки $p_1, p_2, p_3 \in \Gamma$. Обозначим простые дуги $p_1p_2 = \Gamma_3$, $p_2p_3 = \Gamma_1$, $p_3p_1 = \Gamma_2$, где $\Gamma_1, \Gamma_2, \Gamma_3, \subseteq \Gamma$, $\Gamma_1 \cap \Gamma_2 = p_3$, $\Gamma_2 \cap \Gamma_3 = p_1$, $\Gamma_3 \cap \Gamma_1 = p_2$. Пусть, далее, H_1, H_2 суть компоненты $S^2 \setminus \Gamma$ и $R \subseteq \overline{H}_1$ есть континуум, не разбивающий S^2 , причем $R \cap \Gamma = (p_1 \cup p_2 \cup p_3)$.

При этих условиях справедлива следующая

 Π емма. $\Phi=R\cup\Gamma$ разбивает S^2 ровно на 4 области $G_1,G_2,$ $G_3,\,G_4$, причем при соответствующем выборе обозначений $H_2=G_4$

 $u \Gamma_i \subseteq \overline{G_i} \cap \Gamma \subseteq \Gamma_i \cup p_i \ (i = 1, 2, 3).$ 3°. Пусть теперь R_1 есть подконтинуум R, причем $R_1\cap \Gamma=(p_2\cup p_3)$. Обозначим $\Phi_1=R_1\cup \Gamma;$ так как $\Phi_1\subseteq \Phi,$ то $G_1\subseteq V_1,$ где V_1 есть некоторая компонента $S^2 \setminus \Phi_1$. При этих условиях

 $\overline{V}_1 \cap \Gamma = \Gamma_1$. Переходим к доказательству теоремы 1. Пусть $X \subseteq S^2$ и f есть квазимонотонное отображение X на $T=oa\cup ob\cup oc$, где оа, ов, ос суть отрезки, не имеющие попарно общих точек, кроме точки o. В противоречие с утверждением, допустим, что $X=\bigcup X_{\mu}$,

где X_{μ} суть компоненты X, причем число их не менее, чем счетно. В силу компактности X можно выделить топологически сходящуюся последовательность $X_{\mu_n} = X_n$ ((1), стр. 168). Обозначим $\operatorname{lt} X_n = X_0$. При этом можно предполагать, что $X_n \cap X_0 = \Lambda$. Пусть теперь точки $a',a''\in oa$, $b'\in ob$, $c'\in oc$ выбраны произвольно, но так, что o < a' < a'' < a (в силу естественного погядка на oa). Легко видеть, что отображение $f_n = f$ компакта X_n на T квазимонотонно. Обозначим O_n произвольную компоненту $f_n^{-1}(o)$; $(OA')_n$, $(OB')_n$, $(OC')_n$ суть те компоненты $f_n^{-1}(oa')$, $f_n^{-1}(ob')$, $f_n^{-1}(oc')$, соответственно, которые содержат O_n .

В силу квазимонотонности f_n , очевидно, $f_n^{-1}(a'a'')\cap (OA')_n\neq \Lambda$. Пусть $(A'A'')_n$ есть произвольная из тех компонент $f_n^{-1}(a'a'')$, которые пересекаются с $(OA')_n$. Аналогично $f_n^{-1}(a''a)\cap (A'A'')_n\neq \Lambda$, $f_n^{-1}(b'b) \cap (OB')_n \neq \Lambda, f_n^{-1}(c'c) \cap (OC')_n \neq \Lambda; (A''A)_n, (B'B)_n, (C'C)_n$ суть произвольные из тех компонент $f_n^{-1}(a^na)$, $f_n^{-1}(b^tb)$, $f_n^{-1}(c^tc)$, которые пересекаются с $(A^tA^n)_n$, $(OB^t)_n$, $(OC^t)_n$ соответственно.

^{*} Через Л обозначается пустое множество

Не нарушая общности, можно предполагать существование следующих топологических пределов: $lt(OA')_n = (OA')_0$, $lt(OB')_n = (OB')_0$, $lt(OC')_n = (OC')_0$, $lt(A'A'')_n = (A'A'')_0$, $lt(A''A)_n = (A''A)_0$, $lt(B'B)_n = (B'B)_0$, $\mathrm{lt}(C'C)_n = (C'C)_0$. При этом, очевидно, все рассматриваемые топологические пределы принадлежат X_0 .

Кроме того, из квазимонотонности f, f_n легко следует, что $f[(OA')_n] = oa', f[(OB')_n] = ob', f[(OC')_n] = oc', f[(A'A'')_n] = a'a'',$ $f[(A''A)_n] = a''a$, $f[(B'B)_n] = b'b$, $f[(C'C)_n] = c'c$ (здесь $n = 0, 1, 2, \ldots$).

Легко видеть также, что $(OA')_0 \cap (OB')_0 \cap (OC')_0 \neq \Lambda$, $(OA')_0 \cap (A'A'')_0 \neq \Lambda$, $(A'A'')_0 \cap (A''A'')_0 \neq \Lambda$, $(OB')_0 \cap (B'B)_0 \neq \Lambda$, $(OC')_0 \cap (OC')_0 \cap (O$

 $\bigcap (C'C)_0 \neq \Lambda$.

Из непустоты пересечений слагаемых и теоремы Цоретти ((1), стр. 178) заключаем, что связны следующие множества: $F_n'=(OA')_n \cup (OB')_n \cup (OC')_n$, $F_n''=F_n' \cup (A'A'')_n \cup (B'B)_n \cup (C'C)_n$, $F_n=F_n'' \cup (A''A'')_n$ (здесь $n=0,1,2,\ldots$); связно также и $E=(OB')_0 \cup (C'C)_n$ $\bigcup (OC')_0 \bigcup (B'B)_0 \bigcup (C'C)_0$.

Далее понадобятся следующие утверждения:

Далее понадобятся следующие утверждения: I. It $F_n = F_0$. $F_0 \nearrow F_0'' \neq \Lambda$. I'. It $F_n' = F_0'$. II. Так как $f(F_0'') = oa'' \cup ob \cup oc$, то существуют точки $a_0'' \in f^{-1}(a'') \cap F_0''$, $b_0 \in f^{-1}(b) \cap F_0''$, $c_0 \in f^{-1}(c) \cap F_0''$. В силу непрерывности f можно выбрать окрестности U_1 , U_2 , U_3 точек a_0'' , b_0 , c_0 соответственно такие, что $f(U_1) \subseteq (a'a \nearrow a')$, $f(U_2) \subseteq (b'b \nearrow b')$, $f(U_3) \subseteq (c'c \nearrow c')$. Тогда, очевидно, $U_1 \cap F_0'' \subseteq (A'A'')_0$, $U_2 \cap F_0'' \subseteq (B'B)_0$, $U_3 \cap F_0'' \subseteq (C'C)_0$, $F_0' \cap U_1 = \Lambda$ (i = 1, 2, 3). Можно предполагать, что $U_1 \cap U_j = \Lambda$ при $i \neq j$; i, j = 1, 2, 3. III. Если обозначить $A_0' = f^{-1}(a') \cap F_0'$, то $A_0' \cap (A'A'')_0 \neq \Lambda$. В силу 1°. І и І' все F_n (кроме, быть может, конечного числа)

В силу 1°, I и I' все F_n (кроме, быть может, конечного числа) принадлежат одной и той же компоненте $S^2 \setminus F_0$ ". Обозначим эту компоненту через H. Тогда, в силу того же 1°, $\overline{H} \setminus H = F_0$ ". Пусть $ar{F_0}'' = S^2 \setminus H$. Легко видеть, что $ar{F_0}''$ есть континуум. Выберем a_0'' . b_0 , c_0 и их окрестности U_1 , U_2 , U_3 соответственно, как указано в II. Так как a_0'' , b_0 , $c_0 \in F_0''$, то $U_1 \cap H \neq \Lambda$ (i=1,2,3). Построим в H произвольную окружность Γ и обозначим H_1 , H_2

компоненты $S^2 \setminus \Gamma$. Пусть, например, $\tilde{F_0}'' \subseteq H_1$. Легко доказать (так как $U_i \cap H \neq \Lambda$), что существуют непересекающиеся простые дуги $\Delta_1 = p_1 p_1'$, $\Delta_2 = p_2 p_2'$, $\Delta_3 = p_3 p_3'$, где $p_1, p_2, p_3 \in \Gamma$, $p_i' \in U_i \cap (H \setminus H)$, $\Delta_i \setminus (p_i \cup p_i') \subseteq H_1 \cap H$ (i=1, 2, 3). Так как $\overline{H} \setminus H = F_0''$, то нз Π

следует, что:

II'. $p_1' \in (A'A'')_0$.

II". $p_2' \in (B'B)_0$, $p_3' \in (C'C)_0$.

II'''. $p_i' \in F_0'$ (i = 1, 2, 3).

Обозначим $R = \tilde{F_0}'' \cup (\Delta_1 \cup \Delta_2 \cup \Delta_3); R \subseteq \overline{H_1}, R \cap \Gamma = (p_1 \cup p_2 \cup p_3),$ и в силу леммы Александера (3) $S^2 \setminus R$ связно. Поэтому из 2° следует, что $S^2 \setminus \Phi$ (где $\Phi = R \cup \Gamma$) есть сумма четырех компонент

 G_1 , G_2 , G_3 , $G_4=H_2$. Из Π''' легко следует, что $F_0'\cap\Delta_i=\Lambda$ $(i=1,\ 2,\ 3)$. А так как, кроме того, $F_0'\subseteq H_1$, то существует окрестность $U=U(F_0')$ такая, что $U\subseteq H_1$ и $U\cap \Delta_i=\Lambda$ $(i=1,\ 2,\ 3).$

Из I' заключаем, что для всех n (кроме, быть может, конечного числа) $F_n \subseteq U$ и, следовательно, $F_n \cap \Delta_i = \Lambda$, $F_n \cap \Gamma = \Lambda$. Но $F_n \subseteq H$, и

поэтому $F_n' \cap \Phi = \Lambda$.

В силу теоремы Янишевского ((1), стр. 176) каждый из F_n целиком лежит в одной из G_1 , G_2 , G_3 . Пусть, например, G_1 содержит бесконечное число F_n .

Тогда:

IV. $F_0' = \operatorname{lt} F_n' \subseteq \overline{G}_1$, и в обозначениях 2°:

IV'. $\Gamma_1 \subseteq \overline{G}_1 \cap \Gamma \subseteq \Gamma \cup p_1$. Рассмотрим $R_1 = E \cup \Delta_2 \cup \Delta_3$, $\Phi_1 = R_1 \cup \Gamma$. Из II'' следует, что R_1 есть континуум. Так как $R_1 \cap \Gamma = (p_2 \cup p_3)$, то, в силу 3° :

V. $\overline{V}_1 \cap \Gamma = \Gamma_1$ (здесь V_1 есть компонента $S^2 \setminus \Phi_1$, содержа-

В силу IV $F_0'\subseteq \overline{V}_1$, в частности $A_0'=f^{-1}(a')\cap F_0'\subseteq \overline{V}_1$. Легко видеть, что $A'\cap \overline{\Phi}_1=\Lambda$, и поэтому $A_0'\subseteq V_1$. Из III, связности $(A'A'')_0$ и из $(A'A'')_0\cap \overline{\Phi}_1=\Lambda$ заключаем, что $(A'A'')_0\subseteq V_1$. Следовательно, в силу II', $p_1'\in V_1$. Если теперь $p_1'x\subseteq \Delta_1$ есть произвольная простая силу II', $p_1'\in V_1$. щая G_1). дуга, не содержащая точки p_1 , то $p_1'x \cap \Phi_1 = \Lambda$, и поэтому $p_1'x \in V_1$. Отсюда $p_1 \in \overline{V}_1$, что противоречит V.

Доказательство теоремы 2. В противоречие с утверждением допустим, что существует квазимонотонное отображение f некоторого компакта $X\subseteq S^2$ на компакт Y, содержащий подмножество Y_0 , гомеоморфное ωT . Обозначим через X_0 прообраз Y_0 . Нетрудно

показать, что отображение X_0 на Y_0 квазимонотонно.

Не нарушая общности, можно полагать Y_0 совпадающим с ωT . Число компонент X_0 , очевидно, не менее, чем счетно. Отображение g множества ωT на T определяется формулой $g\left(x,y,\frac{1}{n}\right)=(x,y,0).$ Очевидно, д квазимонотонно; легко видеть, что квазимонотонно также и отображение gf, а это противоречит теореме 1.

> Поступило 16 XII 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

Теория множеств, 1937. ² G. T. Whyburn, Analytic тороlogy, N.-Y., 1942. 3 J. W. Alexander, Trans. Am. Math. Soc., 23, 333 (1922).