ФИЗИОЛОГИЯ

П. Д. УЛИТИНА и Б. А. КУДРЯШОВ

ИЗУЧЕНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ АНАЛОГОВ ВИТАМИНА К

(Представлено академиком Я. О. Парнасом 5 Х 1948)

В 1941 г. нами был опубликован в предварительной форме метод биологического испытания препаратов витамина К на крысах (¹). Этот метод, впоследствии несколько усовершенствованный, был применен нами для изучения активности ряда аналогов витамина К. Путем точной оценки активности изучаемых препаратов в крысиных единицах были получены сравнительные данные по следующим соединениям: 2-метил-1,4-нафтохинону, 2-метил-1,4-нафтохинон-3-сульфокислому калию и

бисульфитному соединению 2-метил-1,4-нафтохинона (5) *.

Материал и методика. Для изучения биологической активности препаратов витамина К использовались крысы с весом тела от 150 до 200 г. У животных в асептических условиях перевязывался желчный проток. Через 10-12 дней после операции у крыс систематически бралась кровь из яремной вены при помощи шприца. Перед взятием крови в шприц набиралось 0,05 мл 0,1 М раствора оксалата натрия на объем крови, равный 0,45 мл. Оксалатная кровь центрифугировалась, и отделенная от форменных элементов плазма пускалась в анализ. Количество протромбина определялось в плазме при помощи методики, описанной ранее (1, 2). С целью получения в разных опытах сравнимых результатов в анализах использовался стандартизованный препарат тромбопластина, приготовленный из мозга крыс. Такой препарат при использовании в реакции определения концентрации протромбина в нормальной плазме крысы обеспечивает образование сгустка в 13-14 сек. С разбавленной же в три раза физиологическим раствором оксалатной плазмой крысы стандартный препарат тромбопластина дает образование сгустка в 17—18 сек. Жирорастворимый препарат витамина К вводился животным внутримышечно в спиртовом растворе. Водорастворимые вещества инъицировались в мышцы в физиологическом растворе.

Определение понятия крысиной единицы активности препаратов витамина К. На основании предварительных данных, полученных в предшествующих исследованиях (¹, ²), были даны два варианта определения крысиной единицы витамина К. После проведенной проверки в экспериментах более чем на 1000 животных нами принята окончательная формулировка этого определения. Под условной крысиной единицей витамина К мы подразумеваем минимальное количество вещества, которое способно после однократной внутримышечной инъекции желтушной крысе поднять процент протромбина в крови через 18—24 часа после введения с 5—25% до 85—100%. Для подсчета берется среднее не менее чем от 5 крыс с весом тела от 150 до 200 г.

^{*} Все указанные препараты были получены от М. М. Шемякина.

Результаты эксперимента. С 1939 г. известно (3), что 2-метил-1,4-нафтохинон обладает биологической активностью витамина К. Это вещество, растворимое в жирах и жирорастворителях, используется в клинических условиях в качестве заменителя естественных витаминов К (4). При изучении активности 2-метил-1,4-нафтохинона в экспериментальных условиях нами были получены следующие результаты (табл. 1, A). Из приведенных данных следует, что крысиной единице соответствует навеска 2-метил-1,4-нафтохинона, равная 10 учистого вещества.

По сравнению с 2-метил-1,4-нафтохиноном, 2-метил-1,4-нафтохинон-3-сульфокислый калий проявил в несколько раз меньшую активность (табл. 1, Б); крысиной единице соответствует навеска 2-метил-1,4-нафтохинон-3-сульфокислого калия, равная 100γ.

Таблица 1 Среїдняя концентрация протромбина в плазме желтушных крыс (в процентах)

		До вве-	После введения препарата через часов													
Число кивот- ных	Доза в ү	дения препа- рата	18	42	66	90	114	138.	162	186	210	234				
			A.	2-ме	тил-	1,4-г	нафто	хино	Н							
12 12 12 12 12 65	2 5 8 10 1 000	15 10 10 12 14	51 71 79 94 84	38 46 65 84 91	29 35 46 66 90	21 25 30 44 80	16 24 — 80	13 15 21 38 71	10 13 17 35 63	9 11 17 30 59	7 10 16 25 48	10 14 17 34				
			К	0	Н	т	0	JI	ь							
12	1 мл 60° алког.	. 21	20	19	17	17	13	12	-	-	-	_				
	Б.	2 - мет:	ил-1,	4-на	ртох	инон	- 3 - су.	льфо	кисл	ый ка	алий					
6 6 12 12 11 26	10 15 50 75 100 1 000	12 14 14 12 12 13	18 27 72 80 90 88	24 23 55 69 69 91	22 21 45 54 48 85	18 16 33 36 73	16 15 23 — 28 50	12 11 - 21 - 49	9 19 20 23 46	16 11 - 43	13	13 - -				
	В. Б	исуль	фити	ный к	омп	текс :	2-меті	ил-1,	4-на	фтох	инон	a				
12 12 13 12 38	2 5 8 10 1 000	13 14 15	45 69 83 91 83	28 50 67 72 90	23 42 58 63 94	20 33 - 54 89	22 38 34 86	15 19 21 25 78	12 17 18 22 73	15 17 19 65	15 17 51	12 13 15 41				
			К	0	Н	T	p o	Л	Ь							
17	1 мл фи- зиол раств		20	20	17	17	16		-							

При изучении активности бисульфитного комплекса 2-метил-1,4-нафтохинона было установлено (табл. 1, В), что крысиной единице соответствует навеска бисульфитного комплекса 2-метил-1,4-нафтохинона, равная 100 γ. Таким образом, это вещество по степени своей биологической активности тождественно 2-метил-1,4-нафтохинону и в 10 раз более активно по сравнению с 2-метил-1,4-нафтохинон-3-сульфокислым калием.

Нас интересовал вопрос: какое время требуется для максимального подъема концентрации протромбина в крови подопытных животных после инъекции аналогов витамина К? Определение процента протромбина в крови желтушных крыс через короткие периоды времени после введения препаратов позволило нам получить следующие данные (табл. 2).

Гаолица 2 Средняя концентрацяя протромбина в плазме желтушных крыс (в процентах)

Число живот- ных	Доза в ү	До вне- дения прспа- рата		После введения препарата через часов													
			1	2	3	4	5	6	7	8	9	10	11	12	18	24	
				2 - м	ети	л - 1,	4 - н	афт	охи	нон	ı						
10	10	15	-	21	21	64	74	84	92	92	91	92	90	86	-	85	
	2 -	метил	- 1,4	- на	рто	хин	0 H -	3 - c	уль	фон	сис.	пый	ка	лий			
12 11	75 100	12 12	16	20	31 25	40 31	60	67 69	67 80	90	74 90	90	90	90	18	- 85	
	Бис	ульфи	гны	йк	МП	лек	c 2-	мет	ил-	1,4 -	наф	ТОХ	ин	она			
11	10	13	-	19	22	37	56	67	74	90	9)	90	90	90	-	90	

Как видно из табл. 2, организм животных сравнительно быстро реагирует на введение препаратов витамина K, и через 7—8 час. после инъекции в крови восстанавливается максимальный уровень протромбина, который удерживается до 24 и более часов, в зависимости от дозы и степени активности препарата.

Три указанные выше вещества были испытаны на безвредность на большом числе животных. Токсической дозой 2-метил-1,4-нафтохинона при внутримышечном введении является навеска 20 мг на 200 г веса тела крысы. 2-метил-1,4-нафтохинон-3-сульфокислый калий в тех же условиях обладает той же степенью токсичности в навеске 10 мг, а бисульфитный комплекс 2-метил-1,4-нафтохинона — в навеске 60 мг.

Введение нормальным крысам сублетальных доз бисульфитного комплекса 2-метил-1,4-нафтохинона, как правило, повышало концентрацию протромбина в крови подопытных животных сверх физиологического уровня, однако это явление не оказывало заметного влияния на скорость общей свертываемости крови и не вызывало образования внутрисосудистых тромбов. Повышение концентрации протромбина сверх нормы, при инъекции 50 мг бисульфитного комплекса 2-метил-1,4-нафтохинона на 200 г веса тела крысы, как видно из табл. 3, в среднем не

превышало 130%, в отдельных же случаях оно достигало 150% и через 160 час. после инъекции снижалось до физиологического уровня.

Таблица З Средняя концентрация протромбина в плазме пормальных крыс (в процентах)

Число живот- ных	Доза в ү	До вве-	После введения препарата через часов												
		дения препарата	2	6	7	9	24	48	72	96	120	144	168	192	216
18	50 000	97	103	119	121	127	125	123	118	110	110	108	100	98	100
		К	0	F	ł	Т	p	0	Л	ь					
10	1 мл физиол. раствора	102	103	96	100	-	107	103	100	100	100	100	100	100	100

Изложенные материалы свидетельствуют, что наиболее ценным в практическом отношении является бисульфитный комплекс 2-метил-1,4-нафтохинона, хорошо растворяющийся в воде, обладающей высокой активностью витамина К и отличающийся крайне низкой токсичностью по сравнению с двумя другими изученными веществами.

Институт зоологии Московского государственного университета им. М. В. Ломоносова

Поступило 7 VII 1948

ШИТИРОВАННАЯ ЛИТЕРАТУРА

1 Б. А. Кудряшов, П. Д. Улитина и А. А. Пугачева, Бюлл. эксп. биол. и мед., 9, 99 (1941); 9, 510 (1941). ² Б. А. Кудряшов, Сов. здравоохр. Туркмении, 1, 31 (1942). ³ Н. Ј. Аlmquist and А. А. Кlose, J. Am. Chem. Soc., 61, 1923 (1939); S. Ansbacher and E. Fernholz, ibid., 61, 1924 (1939). ⁴ Б. А. Кудряшов, Усп. совр. биол., 14, 466 (1941). ⁵ Д. А. Бочвар, Л. А. Шукина, А. С. Чернышев, Н. Г. Семенов и М. М. Шемякин, Ј. Ат. Сhem. Soc., 65, 2162 (1943); А. В. Палладин, Достижения сов. мед. в годы Отечественной войны, 2, 72, М., 1944; Н. В. Мооге, J. Ат. Сhem. Soc., 63, 2049 (1941).