ФИЗИКА

Г. Т. ЗАЦЕПИН

КАСКАДНЫЕ КРИВЫЕ ДЛЯ СВИНЦА

(Представлено академиком С. И. Вавиловым 30 IX 1948)

В работах С. З. Беленького (¹,²) даны основы каскадной теории для тяжелых элементов с учетом зависимости эффективного сечения о поглощения фотонов от их энергии *E*, а также с учетом поправки на рассеяние. Были вычислены следующие величины:

$$\overline{t} = \frac{\int_{0}^{\infty} t N(t) dt}{\int_{0}^{\infty} N(t) dt}, \qquad \overline{t^2} = \frac{\int_{0}^{\infty} t^2 N(t) dt}{\int_{0}^{\infty} N(t) dt}, \qquad (1)$$

где N(t) — полное число заряженных частиц в зависимости от t — глубины, выраженной в радиационных единицах.

Из соображений, основанных на законе сохранения энергии, следует также:

$$\int_{0}^{\infty} N(t) dt = \frac{E_0}{\beta}, \qquad (1^1)$$

где E_0 — энергия первичной частицы, создающей ливень, а β — ионизационные потери, которые предполагаются не зависящими от энергии ($\beta = 6, 4 \cdot 10^6 \, \text{eV}$). Полученные выражения справедливы для любой формы зависимости $\sigma(E)$.

При E₀/β≫1 можно связать величины, определенные формулами (1) и (1¹), с величиной и положением максимума каскадной кривой. Оказывается, что:

$$t_m = \overline{t}, \qquad N_m = rac{E/eta}{\sqrt{2\pi (t^2 - \overline{t}^2)}},$$

где t_m — глубина, соответствующая максимуму лавины, а N_m — число частиц в максимуме.

Ввиду практической необходимости знания этих величин для истолкования экспериментов по космическим лучам, мы провели вычисление $\overline{t}(E_0)$ и $\overline{t^2}(E_0)$ для свинца как с учетом поправки на рассеяние, так и без нее. Для малых энергий падающего электрона роль рассеяния становится столь существенной, что его уже нельзя учитывать в виде поправки, и соответствующих вычислений нами проведено не было. Зависимость $\sigma(E)$ была взята согласно таблице, приведенной у Гайтлера (³). Полученные данные приводятся в табл. 1.

Таблица 1

E _o		2,8+10*	5,6.106	1,1.107	1,7.10'	2,8-107	1 0ª	3·10 ⁸	109	1010	1011
Без уче- та рас- сеяния	$\frac{\overline{t}}{\overline{t^2} - \overline{t}^{-2}}$	0,53 2,94	1,21 7,43	2,15 11,3	2,72 13,0	3,44 14,4	4,84 17,9	6,03 20,4	7,29 22,8	9,60 26,9	11,90 31 , 1
С учетом рассея- ния	$\frac{\overline{t}}{\overline{t^2} - \overline{t}^2}$	_	-	-	1,84 7,5	2,72 10,5	4, 2 5 15,0	5,55 18,3	6,86 21,0	9,20 25,4	11,54 29,8

Полученные значения t и t^2 были использованы для построения каскадных кривых. С этой целью каскадная кривая апроксимировалась функцией следующего вида:

$$N(t) = (1 + \beta) e^{\alpha t^{1/2} - \gamma t} - \beta e^{-2\gamma t}, \qquad (2)$$

где первый член является основным, второй же играет роль поправки. Произвольные параметры β, α, γ подбирались таким образом, чтобы были выполнены условия (1) и (1¹).

Вследствие того, что принятый вид апроксимации удовлетворителен лишь для достаточно больших энергий, вычисления каскадных кривых проводились для $E_0 > 10^8 \,\mathrm{eV}$. При этом для \overline{t} и $\overline{t^2}$ взяты значения табл. 1, полученные без поправки на рассеяние, так как выражения для \overline{t} и $\overline{t^2}$ получены С. З. Беленьким при пренебрежении зависимостью радиационных потерь электронов от их энергии, учет которой привел бы к некоторой поправке обратного знака. Величина же этих поправок $E_0/\beta \gg 1$ невелика.

Выбранный вид апроксимации позволяет просто взять интегралы (1) и (1¹) в конечном виде, и задача сводится к совместному решению трех уравнений:

$$\frac{1}{\gamma} \left\{ (1-\beta) \ 2ce^{c^{*}} \sqrt{\pi} \varphi(c) + \frac{1}{2}\beta + 1 \right\} = \frac{E_{0}}{\beta},$$

$$\frac{1}{\gamma^{2}} \left\{ (1+\beta) \ c \ [c+(3+2c^{2}) \ e^{c^{*}} \sqrt{\pi} \varphi(c)] + \frac{3}{4}\beta + 1 \right\} = \frac{E_{0}}{\beta} \overline{t},$$

$$\frac{2}{\gamma^{3}} \left\{ (1+\beta) \ c \ \left[\frac{9}{4} \ c + \frac{1}{2} \ c^{3} + \left(\frac{15}{4} + 5c^{2} + c^{4} \right) e^{c^{*}} \sqrt{\pi} \varphi(c) \right] + \frac{7}{8} \beta + 1 \right\} = \frac{E_{0}}{\beta} \overline{t^{2}},$$

где $c = \frac{\alpha}{2\sqrt{\gamma}}$, $\varphi(c) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{0}^{c\sqrt{2}} e^{-x^{3/2}} dx.$

244

Полученные константы а, β, у приведены в табл. 2, а построенные в соответствии с ним каскадные кривые представлены на рис. 1.

Таблица 2

Рис. 1. Пунктиром изображены каскадные кривые, вычисленные согласно формулам "обычной" каскадной теории (⁴), т. е. при предположении $\sigma(E) = \sigma_0$

Следует отметить, что коэффициент поглощения $k = \frac{1}{N} \frac{dN}{dt}$, получающийся в области "хвоста" каскадной кривой (N=1), для пунктир-

ных кривых равен ~ 0.46 , тогда как согласно эксперименту (⁴) в этой области наблюдается k = 0.26 (при *t*-единице в 0.47 см Pb).

Для кривых, построенных нами в этой области, k = 0.24 - 0.35, т. е. близко совпадает с экспериментом (⁵).

Для проверки чувствительности формы каскадных кривых, удовлетворяющих условиям (1) и (1¹), к виду апроксимации нами был проведен расчет для апроксимирующей функции вида:

$$N(t) = (1 + \beta) e^{\alpha t - \gamma t^{\alpha}} - \beta e^{-2\gamma t^{\alpha}}$$

при $E_0 - 10^{11} \,\mathrm{eV}$. Несмотря на то, что коэффициент поглощения для такой апроксимации в области N=1 равен уже 0,66, значение

245

N(t) = 1 функция достигает при t лишь на $15^{\circ}/_{0}$ меньше, чем то, которое следует из рис. 1, величины же максимумов и их положения совпадают.

Таким образом, вследствие того, что, помимо выполнения условий (1) и (1¹), для вычисленных нами кривых коэффициент поглощения хорошо согласуется с экспериментом, можно считать, что представленные на рис. 1 кривые должны удовлетворительно описывать каскадный процесс в свинце.

Следует отметить, что выбранная нами апроксимация годна лишь при выполнении условия $E_0/\beta \gg 1$ и, кроме того, неудовлетворительно описывает каскадный процесс в области малых значений t ($t < t_m$).

Каскадные кривые для свинца для $E_0 = 10^9 \,\mathrm{eV}$ и $E_0 = 10^{10} \,\mathrm{eV}$ были получены также в работе двух итальянских авторов (⁶). Однако кривые, приведенные в этой работе, не представляются удовлетворительными, так как основное условие (1¹) не выполняется. Площади под кривыми составляют, соответственно, лишь $0.62 E_0 / \beta$ и $0.47 E_0 / \beta$.

Как следует из кривых, приведенных на рис. 1, проникающая способность электронно-фотонных лавин в свинце значительно превышает вычисленную обычно. Недооценка этого обстоятельства приводила ряд авторов к ошибочным заключениям. Насколько велики допускаемые у различных авторов ошибки в оценке проникающей способности, можно видеть из следующего примера. Для электрона с энергией 10° eV получаем проникающую способность порядка 10 см Pb, тогда как в работе Оже с сотрудниками (⁷) для такого слоя свинца указывается энергия в 10¹² eV.

Описанная работа была проведена по предложению С. З. Беленького, которому считаю своим приятным долгом принести благодарность за ценные указания и постоянный интерес к работе.

> Поступило 24 IX 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. З. Беленький, ЖЭТФ, 14, 384 (1944). ² С. З. Беленький, ЖЭТФ, 15, 7 (1945). ³ В. Гайтлер, Квантовая теория излучения, 1940. ⁴ С. З. Беленький, Лавинные процессы в космических лучах, М. — Л., 1948. ⁵ J. of Appl. Phys., 16, 581 (1945). ⁶ Е. Clementel e L. Fabrichesi, Nuov. cim., 5, 78 (1948). ⁷ P. Auger, J. Dandin, A. F. Freon et R. Maze, C. R., 226, 569 (1948)