И. М. ГЕЛЬФАНД и М. А. НАЙМАРК

О СВЯЗИ МЕЖДУ ПРЕДСТАВЛЕНИЯМИ КОМПЛЕКСНОЙ ПОЛУПРОСТОЙ ГРУППЫ ЛИ И ЕЕ МАКСИМАЛЬНОЙ КОМПАКТНОЙ ПОДГРУППЫ

(Представлено академиком И.Г. Петровским 28 IX 1948)

Неприводимое унитарное представление комплексной полупростой группы Ли в можно рассматривать как представление ее максимальной компактной подгруппы Ц. При этом оно разлагается на конечномерные представления группы Ц. Связь между представлениями группы в и подгруппы Ц и изучается в настоящей работе. Мы будем проводить рассуждение для случая, когда в — комплексная унимодулярная группа, а Ц — ее подгруппа унитарных матриц, и будем указывать, как формулируется результат в общем случае. При этом мы используем обозначения и результаты (2).

§ 1. Унитарная подгруппа группы \mathfrak{G} . Обозначим через \mathfrak{U} совокупность всех унитарных матриц \mathfrak{u} из комплексной унимодулярной группы \mathfrak{G} , а через Γ —совокупность всех диагональных матриц из \mathfrak{U} ; \mathfrak{U} —максимальная компактная подгруппа группы \mathfrak{G} .

I. Каждую матрицу $g \in \mathfrak{G}$ можно представить в виде g = ku,

rde kEK u uEu.

Если $g=k_1u_1$ и $g=k_2u_2$, то $u_2=\gamma u_1$ при некотором $\gamma\in\Gamma$; поэтому равенство g=ku определяет матрицу u с точностью до произвольного левого множителя $\gamma\in\Gamma$.

Это означает, что:

II. В каждом правом классе смежности \tilde{z} группы $\mathfrak G$ по подгруппе K содержится один и только один правый класс смежности группы $\mathfrak U$ по подгруппе Γ .

Будем обозначать через \tilde{u} правые классы смежности группы $\mathfrak U$ по подгруппе Γ , а через $\tilde{\mathfrak U}$ —совокупность всех этих классов. В силу предложения Π мы можем отождествить каждый класс \tilde{z} с содержащимся в нем классом \tilde{u} , следовательно, пространство \tilde{Z} с пространством $\tilde{\mathfrak U}$. Преобразование $\tilde{z'}=\tilde{z}\,g$ можно тогда рассматривать как преобразование $\tilde{u'}=\tilde{u}\,g$ соответствующих классов \tilde{u} .

§ 2. Интегральные соотношения. В пространстве \hat{u} существует мера $d\mu$ (\hat{u}), инвариантная по отношению к преобразованию $\hat{u} \rightarrow \hat{u} u_0$, причем при надлежащей нормировке инвариантных мер $d\mu(u)$, $d\mu(\hat{u})$, $d\mu(\hat{y})$, $d\mu(\hat{g})$, $d\mu_I(\hat{g})$:

$$\int f(u) d\mu(u) = \int d\mu(\tilde{u}) \int f(\gamma u) d\mu(\gamma); \quad \int x(g) d\mu(g) = \int d\mu(\tilde{u}) \int x(ku) d\mu_l(k);$$
(1)

$$\int f(\vec{u}) \ d\mu(\vec{u}) = \int f(\vec{u}\,\vec{g}) \frac{\beta(\vec{u}\,\vec{g})}{\beta(ug)} \ d\mu(\vec{u}), \text{ r. e. } \frac{d\mu(\vec{u}\,\vec{g})}{d\mu(\vec{u})} = \frac{\beta(\vec{u}\,\vec{g})}{\beta(ug)}. \tag{2}$$

Если $f(\gamma u) = f(u)$, то можно положить $f(u) = f(\tilde{u})$. (В дальнейшем мы без всяких оговорок не будем делать различия между такой функцией f(u) и $f(\tilde{u})$.) Из (1) тогда получаем, что при $\int d\mu(\gamma) = 1$

$$\int f(u) d\mu(u) = \int f(\tilde{u}) d\mu(\tilde{u});$$

следовательно,

$$\int x(g) d\mu(g) = \int d\mu(u) \int x(ku) d\mu_t(k). \tag{3}$$

Эти результаты остаются справедливыми также в случае произвольной комплексной полупростой группы $\mathfrak G$. При этом роль подгруппы K играет подгруппа, порожденная положительными корневыми векторами инфинитезимальной группы группы $\mathfrak G$, роль группы $\mathfrak I$ — максимальная компактная подгруппа, а группы D — максимальная компактная подгруппа $\mathfrak G$, содержащая регулярный элемент. Наконец, $\Gamma = \mathfrak I \cap D$ и $\beta(k) = d\mathfrak p_I(k)/d\mathfrak p_r(k)$.

§ 3. Основная невырожденная серия неприводимых представлений группы ©. Основная невырожденная серия неприводимых представлений группы © была описана авторами в (2).

Здесь дается другое ее описание.

Пусть $\mathfrak{H}_{\widetilde{\mathfrak{U}}}$ — совокупность всех функций $f(\widetilde{u})$ таких, что $\|f\|^2 = \int |f(\widetilde{u})|^2 d\mu(\widetilde{u}) = \int |f(u)|^2 d\mu(u)$, где $f(\gamma u) = f(u) = f(\widetilde{u})$ (см. § 2). Тогда $\mathfrak{H}_{\widetilde{\mathfrak{U}}}$ — гильбертово пространство.

Будем искать представление $g \rightarrow U_g$ группы ${\mathfrak G}$ в виде

$$U_g f(u) = \alpha (u, g) f(ug), \tag{4}$$

где функция $\alpha(u,g)$ удовлетворяет соотношению $\alpha(\gamma u,g) = \alpha(u,g)$, а ug — любой элемент класса ug (какой — безразлично, ибо по условию $f(\gamma u) = f(u)$). Из равенства $U_{g_1}U_{g_2} = U_{g_1g_2}$ следует, что

$$\alpha(u, g_1) \alpha(ug_1, g_2) = \alpha(u, g_1g_2).$$
 (5)

Отсюда и из условия унитарности оператора U_{g} в силу (2) следует, что

$$U_{g}f(u) = \frac{\alpha(ug)}{\alpha(u)}f(u\overline{g}), \tag{6}$$

где

$$\alpha(\zeta \delta u) = \alpha(\delta) \alpha(u), \quad \alpha(\delta) = \beta^{-1/2}(\delta) \chi(\delta), \tag{7}$$

и $\chi(\delta)$ — характер группы D; его можно записать в виде

$$\chi(\delta) = |\lambda_2|^{m_1 + i\rho_1} \lambda_2^{-m_2} |\lambda_3|^{m_3 + i\rho_3} \lambda_3^{-m_3} \dots |\lambda_n|^{m_n + i\rho_n} \lambda_n^{-m_n}$$
(8)

 $(m_p$ — целые, ρ_p — произвольные действительные числа).

Отметим, что умножение функций $f(\tilde{u})$ на функцию $\omega(\tilde{u})$, по модулю равную единице, не изменяет нормы $\|f\|$ и переводит функцию $\alpha(n)$ в $\alpha(u)/\omega(\tilde{u})$.

Следовательно, функция $\alpha(u)$ определена данным представлением с точностью до множителя (\tilde{u}) , по модулю равного единице. Если $g = \zeta \delta u$, то $gg^* = \zeta \delta \delta^* \zeta^*$; так как $\zeta^* \in Z$, то, согласно формуле

(2, 13) B (2),

$$|\lambda_p|^2 = \Delta_p / \Delta_{p+1}, \quad p = 1, 2, ..., m,$$
 (9)

где Δ_p — минор матрицы gg^* , составленный из ее последних n-p+1строк и столбцов, и $\Delta_{n+1}=1$. Аргументы же чисел λ_p вообще не определены в силу соогношения $g=\zeta\delta u=\zeta\delta\gamma\cdot\gamma^{-1}u$.

В случае произвольной полупростой группы в основная невырожденная серия также задается формулами (6) и (7), с той же интерпретацией рассматриваемых подгрупп и функции $\beta(k)$, которая была указана в конце § 2. При этом χ (δ) попрежнему обозначает характер

Формулы (6) и (7) описывают также и дополнительную невырожденную серию представлений, если, не требуя выполнения условия $|\chi(\delta)| = 1$, надлежащим образом определить функцию $\chi(\delta)$, и

метрику в пространстве функций $f(\tilde{u})$.

§ 4. Сферические функции.

 $ext{Теорема 1.} \ ext{Пусть } U_g$ — представление невырожденной серии группы ®, соответствующее характеру $\chi(\delta)$. Для того чтобы в пространстве этого представления существовал вектор, инвариантный по отношению ко всем представлениям U_{μ} , $u \in \mathfrak{U}$, необходимо и достаточно, чтобы $\chi(\gamma) = 1$, т. е. чтобы $m_2 = m_3 = \ldots = m_n = 0$. При выполнении этого условия существует с точностью до постоянного множителя только один такой вектор.

Действительно, в силу (6) такой вектор $f_{0}(u)$ удовлетворяет условию $\frac{\alpha(uu_0)}{duu_0} f_0(uu_0) = f_0(u)$, т. е. $\alpha(uu_0) f_0(uu_0) = \alpha(u) f_0(u)$. Следовательно, $\alpha(u) f_0(u) = C$, где C — константа; $f_0(u) = C\alpha^{-1}(u)$. Так как $f_0(\gamma u) = f_0(u)$, то отсюда следует, что и $\alpha(\gamma u) = \alpha(u)$, $\hat{\tau}$. e. $\alpha(\gamma) \alpha(u) = \alpha(u)$. Таким образом, $\chi(\gamma) = \alpha(\gamma) = 1$; $f_0(u) = C\alpha^{-1}(u)$, и теорема полностью доказана.

При выполнении условия $\alpha(\gamma) = 1$ мы имеем: $\alpha(u) = \alpha(u)$.

Так как $|\alpha(u)| = 1$, то, полагая $\omega(u) = \alpha(u)$ (ср. конец § 3), мы получим, что можно считать $\alpha(u) = 1$ и $f_0(u) \equiv 1$. При надлежащей нормировке $d\mu(\tilde{u})$ функция $f_0(u) \equiv 1$ будет нормированным вектором, инвариантным относительно U_n .

Положим

$$\varphi(g) = (U_g f_0, f_0);$$
 (10)

так как U_g — неприводимое представление, то $\varphi(g)$ — элементарная, положительно-определенная функция (см. (3)); в силу определения f функция $\varphi(g)$ постоянна на двусторонних классах смежности по \mathfrak{U} : $\varphi(ug) = \varphi(gu) = \varphi(g).$

Функция $\varphi(g)$ называется сферической функцией данного

представления U_{ϱ} .

Всякую матрицу g можно представить в виде $g=u_1 \delta u_2$, где δ диагональная матрица с положительными диагональными элементами. Поэтому достаточно найти $\varphi(\delta)$. Из формул (10), (1,7) в (2), (6), (7), (8) и (9) § 3 и равенств $f_0 = 1$, $m_2 = m_3 = \ldots = m_n = 0$ следует, что в случае представления основной невырожденной серии

$$\varphi(\delta) = \int \alpha(u\delta) d\mu(u) = \int \Delta_2^{i\frac{\rho_3}{2} - 1} \Delta_3^{i\frac{\rho_3 - \rho_2}{2} - 1} \dots \Delta_n^{i\frac{\rho_n - \rho_{n-1}}{2} - 1} d\mu(u), \quad (11)$$

где $\Delta_{\mathbf{p}}$ — минор матрицы $u\delta^2 u^*$, составленный из ее последних n-p+1 строк и столбцов.

Вычисляя интеграл в (11), приходим к следующей теореме:

Теорема 2. Если U_g — представление основной невырожденной серии группы \mathfrak{G} , отвечающее характеру $\chi(\delta) = |\lambda_2|^{i\rho_1} |\lambda_3|^{i\rho_3} \dots |\lambda_n|^{i\rho_n}$, то соответствующая сферическая функция определяется формулой:

$$\varphi(\delta) = \left(\frac{2}{I}\right)^{\frac{n(n-1)}{2}} \frac{1}{\prod_{1 \leq p < q \leq n} (\rho_{q} - \rho_{p}) (\lambda_{q}^{2} - \lambda_{p}^{2})} \begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda_{1}^{i\rho_{n}} & \lambda_{2}^{i\rho_{n}} & \dots & \lambda_{n}^{i\rho_{n}} \\ \dots & \dots & \dots \\ \lambda_{1}^{i\rho_{n}} & \lambda_{2}^{i\rho_{n}} & \dots & \lambda_{n}^{i\rho_{n}} \end{vmatrix}$$
(12)

Теорема 1 переносится без всяких изменений на представления основной невырожденной серии произвольной комплексной полупростой группы. При этом для сферических функций имеет место аналогичная формула:

$$\varphi(\delta) = c \frac{\sum_{s} \pm \chi(\delta_{s})}{\sum_{s} \pm \beta^{-1/2}(\delta_{s})},$$

где δ , означает результат применения автоморфизма s группы S к элементу группы D. Знак \pm определяется в зависимости от четности или нечетности элемента s, а численный множитель c определяется из условия $\varphi(e)=1$.

§ 5. Разложение по представлениям унитарной под-

группы. Следующая теорема является обобщением теоремы 1.

Теорема 3. Пусть U_g —представление невырожденной серии группы \mathfrak{G} , соответствующее характеру $\chi(\delta)$. Для того чтобы полученное из него представление U_u унитарной подгруппы \mathfrak{U} содержало данное неприводимое представление c(u) этой подгруппы, необходимо и достаточно, чтобы в пространстве представления c(u) содержался весовой вектор этого представления веса $\chi(\gamma)$. Представление c(u) содержится в представлении U_u столько раз, сколько есть линейно независимых весовых векторов представления c(u) веса $\chi(\gamma)$.

Теорема 3 также остается верной для представлений невырожден-

ной серии произвольной комплексной полупростой группы.

Из теоремы 3 следует, что в разложении представления U_u представление c(u) с наинизшим старшим весом встречается только один раз, и этот вес есть $\chi(\gamma)$.

Поступило 28 IX 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. М. Гельфанд и М. А. Наймарк, Изв. АН СССР, сер. матем., 11, 411 (1947). ² И. М. Гельфанд и М. А. Наймарк, Матем. сб., 21 (63):3, 405, (1947). ³ И. М. Гельфанд и Д. А. Райков, Матем. сб., 13 (55), 301 (1943). ⁴ A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris, 1940.