Доклады Академии Наук СССР 1948. Том LXIII, № 3

МАТЕМАТИКА

м. бокштейн

О РАЗМЕРНОСТИ ТОПОЛОГИЧЕСКОГО ПРОИЗВЕДЕНИЯ

(Представлено академиком А. Н. Колмогоровым 1 Х 1948)

В настоящей заметке дается окончательный результат моих исследований относительно гомологической размерности топологического произведения двух бикомпактов.

Предварительные результаты этих исследований, приведенные в конце моей статьи о группах и кольцах гомологий для топологического произведения (3), содержат существенную неточность и нуждаются в исправлении *. Это непосредственно следует из построенного В. Г. Болтянским (6) примера компакта размерности 2, топологический квадрат которого имеет размерность 3, тогда как в силу этих результатов он был бы четырехмерным **.

Оказывается, что для вычисления гомологической (а потому и урысоновско-броуэровской) размерности топологического произведения действительно достаточно задать значения ∇ -размерности для обоих сомножителей по всем полям коэффициентов из полной системы R, R_p , C_p , $Q_p(^2)$, но формулировка соответствующей теоремы статьи (3) должна быть изменена следующим образом:

Tеорема. ∇ -размерность топологического произведения двух бикомпактов A и B по каждому из полей коэффициентов R и C_p равна сумме значений √-размерности по этому полю коэффициентов для сомножителей, а для ∇ -размерности по полям коэффициентов R_p и Q_p имеем:

$$\begin{split} \operatorname{Dim}_{R_p}(A\times B) &= \min \left\{ \max \left(\operatorname{Dim}_R A + \operatorname{Dim}_R B, \right. \right. \\ & \left. \operatorname{Dim}_{\mathcal{C}_p} A + \operatorname{Dim}_{\mathcal{C}_p} B, \operatorname{Dim}_{\mathcal{Q}_p} A + \operatorname{Dim}_{\mathcal{Q}_p} B + 1 \right), \\ & \left. \operatorname{max} \left(\operatorname{Dim}_R A + \operatorname{Dim}_R B, \operatorname{Dim}_{\mathcal{C}_p} A + \operatorname{Dim}_{\mathcal{C}_p} B, \right. \right. \\ & \left. \operatorname{Dim}_{R_p} A + \operatorname{Dim}_{\mathcal{Q}_p} B, \operatorname{Dim}_{\mathcal{Q}_p} A + \operatorname{Dim}_{R_p} B \right) \right\}; \\ \operatorname{Dim}_{\mathcal{Q}_p}(A\times B) &= \max \left(\operatorname{Dim}_{\mathcal{Q}_p} A + \operatorname{Dim}_{\mathcal{Q}_p} B, \operatorname{Dim}_{\mathcal{C}_p} A + \operatorname{Dim}_{\mathcal{C}_p} B - 1 \right) \end{split}$$

бы, по (3), при взятии топологического квадрата удвоиться.

^{*} Следует кстати заметить, что незначительная неточность имеется и в первой части этой работы (3) — именно, при построении ∇ -групп топологического произведения указаны не все соотношения между образующими этих групп (что, однако, никак не влияет на правильность самой доказываемой там теоремы).

** Ибо ∇ -размерности по полям коэффициентов R и R_p , а потому и урысоновская размерность, являющаяся, согласно (2), максимальной из них, должны были

 $(\operatorname{Dim}_G A \operatorname{oбозначает}
abla$ -размерность пространства A по полю коэффи-

пиентов G) *.

Прежде всего вводятся новые числовые инварианты, из знания которых, с одной стороны, можно вычислить ∇ -размерность бикомпакта по любому из полей коэффициентов R, R_p , C_p , Q_p , и которые, с другой стороны, образуют систему, замкнутую относительно действия топологического перемножения пространств, т. е. такую, что значения этих числовых инвариантов для топологического произведения двух бикомпактов определяются их значениями для сомножителей **.

Эти новые инварианты, образующие счетную систему чисел, распадающихся на 4 сорта: $D_0(A)$, $d_p(A)$, $\Delta_p(A)$, $\delta_p(A)$ (где индекс p пробегает по всем простым числам), будут определены следующим

образом.

 $D_{\mathbf{0}}\left(A
ight)$ есть наибольшее число q такое, что существует подмножество A' типа G_{\circ} бикомпакта A, q-мерная abla-группа которого по целочисленному полю коэффициентов содержит элемент бесконечного порядка; $d_{p}(A)$ есть наибольшее число q такое, что в A найдется подмножество A' типа G_{\circ} , q-мерная целочисленная ∇ -группа которого содержит элемент бесконечного порядка, с точностью до элементов конечного порядка не делящийся на простое число p (т. е. который не может быть представлен как сумма элемента конечного порядка и элемента, являющегося р-кратным другого элемента); $\Delta_p(A)$ есть наибольшее число q такое, что в A найдется подмножество A' типа G_{\circ} , q-мерная abla-группа которого по модулю p содержит элемент, не являющийся проекцией π_p^0 (в смысле статьи $(^1)$) от элемента целочисленной ∇ -группы; наконец, $\delta_p(A)$ есть наибольшее число q, для которого найдется такое $A' \subseteq A'$ типа $G_{\mathfrak{p}}$ и такое натуральное число m, что q-мерная ∇ -группа A' по модулю m содержит элемент, не являющийся проекцией π_m^{mp} какого-нибудь элемента q-мерной ∇ -группы A' по модулю mp. При этом подпространство A'пространства A называется подпространством типа G_{c} , если оно является разностью двух открытых в A множеств (или, что то же, разностью двух замкнутых в A множеств, или же пересечением открытого и замкнутого в A множества). Очевидно, что $D_0(A) \gg d_n(A)$, $\nabla_{p}(A) \geqslant \delta_{p}(A)$.

abla-гомологическая размерность бикомпакта A по полям коэффициентов R, R_p , C_p , Q_p полной системы выражается через инварианты

 $D_0(A)$, $d_p(A)$, $\mathring{\nabla}_p(A)$, $\delta_p(A)$ по формулам:

$$\begin{aligned} & \text{Dim}_{R} A = D_{0}(A), \\ & \text{Dim}_{R_{p}} A = \max{(D_{0}(A), \ \Delta_{p}(A) + 1)}, \\ & \text{Dim}_{C_{p}} A = \max{(d_{p}(A), \ \Delta_{p}(A), \ \delta_{p}(A) + 1)}, \\ & \text{Dim}_{Q_{p}} A = \max{(d_{p}(A), \ \Delta_{p}(A))}. \end{aligned}$$

При топологическом перемножении двух бикомпактов A и B введенные числовые инварианты ведут себя следующим образом:

$$D_0(A \times B) = D_0(A) + D_0(B),$$

 $d_p(A \times B) = d_p(A) + d_p(B),$

^{*} Таким образом, аддитивность ∇ -размерности при топологическом перемножении имеет место, в отличие от сказанного в (³), не для полей коэффициентов R, R_ρ и C_p , а лишь для R и C_p (но не для R_ρ и Q_p).

** Тезисы этой части настоящей работы были опубликованы в (⁵).

$$\begin{array}{c} \Delta_{p}(A \times B) = \max{(\Delta_{p}(A) + \Delta_{p}(B), \ d_{p}(A) + \Delta_{p}(B), \\ \Delta_{p}(A) + d_{p}(B), \ \delta_{p}(A) + \delta_{p}(B) + 1), \\ \delta_{p}(A \times B) = \max{(\delta_{p}(A) + \delta_{p}(B) + 1, \ \Delta_{p}(A) + \delta_{p}(B), \\ \delta_{p}(A) + \Delta_{p}(B), \ d_{p}(A) + \delta_{p}(B), \ \delta_{p}(A) + d_{p}(B)). \end{array}$$

Сформулированная в начале настоящей статьи теорема является непосредственным следствием этих предложений. Доказываются они при помощи результатов и методов моих работ $\binom{1-3}{2}$ (используется также результат статьи $\binom{4}{2}$).

Поступило 29 IX 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Бокштейн, ДАН, 37, № 9 (1942). ² М. Бокштейн, ДАН, 38, № 7 (1943). ³ М. Бокштейн, ДАН, 40, № 9 (1943). ⁴ М. Бокштейн, ДАН, 59, № 4 (1948). ⁵ М. Бокштейн, 4-я научно-техн. конф. Моск. авиац.-технолог. ин-та (тезисы докладов), стр. 100 (1948). ⁶ В. Г. Болтянский, Усп. мат. наук, 3, в. 5 (27), 159 (1948) (резюме доклада на Моск. матем. об-ве от 11 V 1948).