Материалы XXVII Республиканской научной конференции студентов и аспирантов «Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях», Гомель, 18–20 марта 2024 г.

Цель разработки заключается в создании удобного и информативного инструмента для туристов, желающих познакомиться с историческими и культурными богатствами страны. Этот ресурс будет охватывать различные аспекты туристической индустрии, включая представление исторических памятников, культурных событий, традиций и национальной кухни, а также обзоры природных достопримечательностей, рекреационных зон и активного отдыха, информацию о местных фестивалях и мероприятиях, возможности для занятий спортом и экскурсий, а также советы по путешествиям, размещению и питанию.

Разработка веб-ресурса «Узнай Беларусь» включает в себя создание удобного интерфейса для пользователей, систему навигации по категориям достопримечательностей, возможность планирования маршрутов и составления индивидуальных программ отдыха. Кроме того, планируется интеграция с различными информационными базами данных и картографическими сервисами для обеспечения полноты и точности предоставляемой информации.

Отметим, что такой ресурс будет способствовать сохранению и популяризации исторического и культурного наследия Беларуси, а также повысит интерес к изучению истории и культуры страны как со стороны местных жителей, так и со стороны гостей.

А. А. Ястребов, О. Д. Асенчик (ГГТУ имени П. О. Сухого, Гомель)

МЕТОД ОБУЧЕНИЯ РЕКУРРЕНТНОЙ НЕЙРОННОЙ СЕТИ LSTM ДЛЯ КРАТКОСРОЧНОГО ПРОГНОЗИРОВАНИЯ ПОВЕДЕНИЯ ЦЕН НА КРИПТОВАЛЮТНОЙ БИРЖЕ

Одной из основных проблем при обучении рекуррентной нейронной сети LSTM (Long Short-Term Memory) для краткосрочного прогнозирования цен на криптовалютной бирже является необходимость использования множества криптовалютных пар в качестве обучающих данных. Это приводит к высокой размерности входного пространства и усложняет процесс обучения модели нейронной сети.

Для решения этой проблемы предлагается обучать рекуррентную нейронную сеть *LSTM* только на данных криптовалюты *Bitcoin*.

Это обусловлено тем, что поведение других криптовалют часто демонстрирует сильную корреляционную связь с поведением криптовалюты Bitcoin [1].

Для обучения модели рекуррентной нейронной сети *LSTM* использованы данные криптовалюты *Bitcoin* за период с 2018 по 2024 год. Для тестирования обученной модели нейронной сети *LSTM* использованы данные 168 криптовалютных пар за 2023 год.

Для оценки точности прогнозирования обученной модели нейронной сети *LSTM* используется метрика *MAPE* (*Mean Absolute Percentage Error*) — средняя абсолютная ошибка в процентах. Она предоставляет информацию о среднем процентном отклонении между прогнозами и наблюдаемыми значениями.

В результате тестирования обученной модели нейронной сети *LSTM* средняя абсолютная ошибка составляет 5%. Этот результат подтверждает, что обучение модели нейронной сети *LSTM* на данных криптовалюты *Bitcoin* позволяет достичь достаточно высокой точности краткосрочного прогнозирования поведения цен других криптовалютных пар.

Литература

1 Crypto Correlation Tool / Blockchain Center / Электронные данные [Электронный ресурс]. — Режим доступа: https://www.blockchaincenter.net/en/crypto-correlation-tool. — Дата доступа: 10.11.2023.

Jianxiong You

(Yanka Kupala State University of Grodno, Belarus)

DEVELOPMENT OF 3D VECTOR MAP

С развитием общества и городов традиционные двумерные векторные карты больше не могут удовлетворять потребности высокоточных служб, таких как дорожная навигация и городское планирование. Хотя существующие трехмерные растровые карты обладают преимуществом высокого разрешения, их формат и размер данных не позволяют анализировать и передавать их. Таким образом, предлагаемый проект направлен на построение подробной трехмерной информационной модели городской среды на основе векторных данных.