ФИЗИЧЕСКАЯ ХИМИЯ

Член-корреспондент АН СССР Б. ДЕРЯГИН, Р. ФРИДЛЯНД и В. КРЫЛОВА

НОВЫЙ МЕТОД ИЗМЕРЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ ПОРИСТЫХ ТЕЛ И ПОРОШКОВ

Как было показано (1), кнудсеновский поток газа через пористое тело подчиняется уравнению:

$$Q = \frac{24}{13} \sqrt{\frac{2}{\pi}} \frac{\delta^2}{S_0} \sqrt{\frac{1}{MRT}} \frac{dp}{dx},\tag{1}$$

где Q обозначает число молей газа, протекающих через 1 см² пористой перегородки за 1 сек. при градиенте давления поперек перегородки, равном dp/dx; S_0 — удельная поверхность в см² на 1 см³ объема тела; δ — "пористость", равная объему пор в единице объема тела; M — молекулярный вес газа; R — универсальная газовая постоянная; T — абсолютная температура. Для того чтобы течение газа

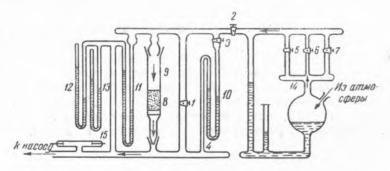
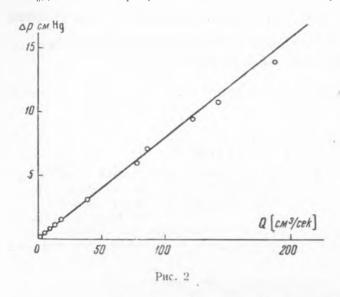


Рис. 1. Схема установки для определения удельной поверхности пористых тел и порошков

было кнудсеновским и подчинялось уравнению (1), необходимо, чтобы в порах перегородки соударения молекул друг с другом были крайне редки по сравнению с ударами о стенки пор, т. е. чтобы газ был разрежен настолько, что средняя длина пробега его молекул была бы велика по сравнению с максимальными поперечниками пор.

Для измерений на основе (1) S_0 была построена установка *, схе-


матически изображенная на рис. 1.

Исследуемый порошкообразный образец 8 набивается в цилиндрическую трубку 9. С помощью форвакуумного насоса через образец протягивается воздух, объемная скорость течения которого измеряется реометром 14. Перепад давления на образце замеряется мано-

^{*} Впервые практическая применимость метода была проверена в дипломной работе Т. А. Слепян, выполненной в лаборатории поверхностных сил Института физической химии АН СССР и защищенной на кафедре коллоидной химии МГУ в 1945 г. Объектом измерений служили образцы картона.

метрами: масляным 10 и ртутным 11. Скорость протекания газа может быть в широких пределах изменяема с помощью микрокрана 2. Давление воздуха под образцом оценивалось по свечению в разрядной трубке 13 или по масляному манометру 14, а выше 10 мм Hg — по ртутному манометру 12. 1, 3, 4, 5, 6, 7 — двухходовые краны, 15 — разрядная трубка.

Для определения S_0 по формуле (1) реометром измеряется Q и перепад давления на образце $\Delta p = p_2 - p_1$, где p_2 — давление над образцом, а $p_1 < p_2$ — давление под образцом. Чтобы убедиться, что газ "достаточно разрежен" для данного тела, перепад давления Δp

определяется для различных значений Q при различных значениях p_1 и p_2 . В кнудсеновской области Q пропорционально $\Delta p = p_2 - p_1$ и не зависит от среднего давления $(p_1 + p_2)/2$.

 Δx измеряется непосредственно, а δ —или волюменометром, или вычисляется по объемному весу образца ρ' и удельному весу материала образца ρ : $\delta = 1 - \rho'/\rho$.

На рис. 2, по данным измерения для

окиси цинка, приводится кривая изменения Δp в зависимости от Q. Как видно из рисунка, прямолинейный участок кривой имеет здесь место только для малых Q, при которых $p_1 < 0.3$ мм Hg. Рассчитанная из прямолинейного участка по формуле (1) S_0 оказалась равной $0.65 \, \text{м}^2/\text{см}^3$. Отметим, что весь процесс определения S_0 (подготовка образца, измерение и расчет) занимает не более 1-2 час.

Таблица 1

	Удельная поверхность в м²/г								
Наименование образца	Газовый ме- тод при		ции	ции	про- та из ора	По теплоте смачивания		-микро- й метод	
	атмосферном давлении	кнудсенов-	Метод адсорбции азота	Метод адсорбции красок	По адсорбции пр пилового спирта водного раствора	водой	метиловым спиртом	Электронно-ми скопический м	
1	2	3	4	5	6	7	8	9	
Порошок корунда	0,45 0,57	1,20 2,6 9,5	1,17 2,7 —	0,50 0,58			 6,6	7,0	
Гяжело-суглинистая подзоли- стая почва	0,41 4,2 0,35	0,94 14,2 0,64	3,9 56,0 1,9	- 69,5 17,5		_	=		

Описанным методом была измерена удельная поверхность ряда адсорбентов, из которых часть обладает развитой пористой поверхностью (почва, цемент, силикагель), а другая часть относится к непористым порошкам (тонкий порошок корунда, окись цинка, сернокислый барий). В табл. 1 приведены результаты наших измерений, наряду с величинами для удельной поверхности тех же порошков, полученными другими методами измерений.

При изложении теории метода (1) отмечалось, что по сопротивлению течению газов нельзя измерить всю поверхность адсорбента, включая поверхность "тупиков" в зернах порошка, а лишь S_0 , определяющуюся зернами, образующими сквозные поры; поэтому S_0 , измеренная по методу адсорбции, для случая "пористых" объектов будет

превышать измеренную по сопротивлению течению газов.

В 4-м и 5-м столбцах табл. 1 приводятся результаты измерения удельной поверхности, произведенные по изотермам адсорбции азота при низких давлениях, при температуре жидкого воздуха и по изотер-

мам адсорбции красок из растворов *.

Как и ожидалось, оба метода для "пористых" образцов (силикагель, почва, цемент) дают для удельной поверхности значения, сильно превосходящие те, которые получены нами. Расхождения в результатах для удельной поверхности "непористых" порошков (корунда и окиси цинка) при измерениях по методу сорбции азота и методу протекания разреженного газа невелики и лежат в пределах точности обоих методов измерения.

Для характеристики удельной поверхности строительных материалов (песок, цемент и пр.) широкое распространение нашел метод, основанный на измерении сопротивления течению газов при давлениях, близких к атмосферному. При этом для расчета S_0 пользуются полуэмпирической формулой Карман, Леа и Нурса ($^{2-4}$). Во 2-м столбце табл. 1 для сравнения приводятся величины S_0 тех же порошков, полученные из измерений по этому методу в Институте цемента. Метод дает явно заниженные результаты, тем более заниженные, чем больше S_0 . Такая картина расхождений легко объясняется влизнием газокинетического скольжения газа по твердой стенке, роль которого относительно тем больше, чем уже поры.

Удобным методом для проверки методики в случае "непористых" порошков является метод измерения смеси порошков различного гранулометрического состава. Порошки с различной \mathcal{S}_0 смешиваются в определенном весовом соотношении и тем же методом, которым

измерялась S_0 составляющих, определяется S_0 смеси.

Критерием правильности измерений является совпадение величины удельной поверхности смеси, полученной непосредственным измерением, с той, которая получается из расчета, исходя из весовых соотношений составляющих. Для проверки по методу смешения нами выбраны порошки корунда, характеризующиеся по времени осаждения взмученного порошка.

В табл. 2 приведены соответствующие данные, из которых видно, что совпадение рассчитанных величин с измеренными получается очень хорошим, в том числе при смешении порошков, дисперсность

которых различается в 100 раз.

Метод смешения порошков был нами применен при определении удельной поверхности сульфата бария **. Удельная поверхность этого

** Необходимость прибегать в этом случае к методу смешения объясняется тем, что взятый в отдельности порошок сульфата бария подобной высокой дисперсности

^{*} Измерения по методу сорбции красок производились в Государственном институте высоких давлений. Удельная поверхность силикагеля измерялась по сорбции судана из раствора хлористого углерода, а корунда и окиси цинка — по сорбции метиленовой сини из водного раствора.

порошка измерялась нами в смеси с тонким 240-минутным порошком кварца при весовых соотношениях сульфата бария и кварца 1:8. Полученная при этом удельная поверхность сульфата бария также приводится в табл. 1 в сравнении с величиной удельной поверхности, измеренной различными методами в лаборатории акад. М. М. Дубинина в Институте физической химии АН СССР.

Таблина 2

3 по-	Дисперсность по врамени	Удельная поверхность в м ³ /г 10 ³					
Состав	осаждения в мин.	изме-	вычисл	адсорбция СН ₂ ОН			
	30	0,66		_			
I,	240	1,16	-	_			
Корунд	Смесь пре-						
0	дыдущих	0.01	0.01				
-	(1:1)	0,91	0,91	_			
		1,37	_				
	_	2,38	_	-			
1 1	_	3,65					
		6,54	_	CO 1			
f= 1	_	49,00		60,1			
TH	Смесь рав-						
Апатит	ных вес.			0.0			
X	колич.	11,7	11,9	8,0			
. 1	_	45,5	-	45,0			

В зависимости от цели использования пористого тела, в одном случае важно знать все подробности образца, включая и тупики, в других же случаях важна только "сквозная" поверхность зерен без "тупиков". Следует добавить, что ряд полуэмпирических формул связывает с сквозной поверхностью коэффициент фильтрации жидкости по закону Дарси (5).

Описанный здесь метод в настоящее время применяется для определения удельной поверхности почв, удобрений, саж и других порошков и дисперсных тел.

Приведенные в табл. 1 данные показывают, что разработанный нами метод дает результаты, совпадающие с результатами наиболее надежных современных методов определения удельной поверхности

мористых тел, выгодно отличаясь от них простотой и доступностью методики, быстротой измерений, не требующих, в частности, тренировки и очистки поверхности частиц, и легкостью расчетов. Одновременно метод для "непористых" частиц весьма универсален и хорошо обоснован теоретически.

В заключение выражаем благодарность проф. Ф. Е. Колясеву за содействие в работе, Н. Н. Касаткину за измерения удельной поверкности, акад. М. М. Дубинину, А. В. Киселеву и В. В. Серпинскому за сообщение экспериментальных данных, Д. П. Добычину и Т. Р. Целлинской за измерения по методу адсорбции из растворов.

Физико-агрономический институт Всесоюзной академии сельскохозяйственных наук им. В. И. Ленина

Поступило 8 VI 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. В. Дерягин, ДАН, **53**, 627 (1946). ² Р. С. Сагтап, J. Soc. Chem. Ind., **57**, 225 (1938). ³ Р. М. Lea and V. Nurse, ibid., **58**, 277 (1939). ⁴ В. Ф. Журавлеви М. М. Сычев, ЖПХ, **20**, 171 (1947). ⁵ См. напр. Л. С. Лейбензон, Движение природных жидкостей и газов в пористой среде, гл. 1, М., 1947.

весьма сильно агрегируется, в результате чего образуется значительное число довольно грубых пор, резко снижающих сопротивление фильтрации. Это снижение сопротивления фильтрации согласуется с развитой теорией (¹), из которой следует, что при наличии, наряду с порами одного порядка величины, пор значительно более грубых распределение пробегов молекул по длинам значительно отклоняется от расмределения типа Клаузиуса, что и объясняет понижение сопротивления. Эффект агрегации делается незаметным при равномерном смещеник с достаточо большим количеством кварцевого порошка. Другой примененный метод состоял в получении плотного осадка сульфата бария путем его взмучивания и последующей седиментации в 0,01 N растворе оленновой кислоты в бензоле по рецептуре, любезно сообщенной нам Е. К. Венстрем. Оба метода дали совпадающие результаты.