MATEMATUKA

И. ГЛАЗМАН

ОБ ИНДЕКСЕ ДЕФЕКТА ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ

(Представлено академиком А. Н. Колмогоровым 18 XI 1948)

В своей известной статье 1940 г. Г. Вейль (1) установил, что урав-

$$l(y) \equiv -\frac{d}{dt} \left(p \frac{dy}{dt} \right) + qy = \lambda y,$$

где p(t), q(t) непрерывны и p(t)>0 ($0 < t < \infty$), при всех невещественных λ имеет либо одно либо два линейно независимых решения из $L_{\mathbf{3}}(0,\infty)$. В 1921 г. Виндау, пытаясь обобщить указанный результат Γ . Вейля на уравнение вида

$$l(y) \equiv \frac{d^2}{dt^2} \left(p \frac{d^2y}{dt^2} \right) - \frac{d}{dt} \left(q \frac{dy}{dt} \right) + ry = \lambda y,$$

где p(t), q(t), r(t) непрерывны и p(t)>0 ($0 \leqslant t < \infty$), пришел к выводу (2), что такое уравнение при всех невещественных λ имеет либо два, либо четы ре линейно независимых решения из $L_2(0,\infty)$. Позднее, в 1940 г., Д. Шин опубликовал фундаментальную статью ((3), а также (4-6)), посвященную обобщению результатов Γ . Вейля и Виндау на уравнения вида

$$l(y) = \lambda y, \tag{1}$$

где l(y) — самосопряженное дифференциальное выражение обобщенного типа (см. (3)) любого порядка.

В этой статье Д. Шин получает следующие результаты:

А. Число m линейно независимых решений уравнения вида (1) порядка 2n при $1m \lambda \neq 0$, принадлежащих $L_2(0, \infty)$, удовлетворяет неравенству $m \gg n$.

В. Имеет место альтернатива: либо m=n, либо m=2n.

В 1944 г. Г. Я. Любарский, пытаясь перенести результат В на системы дифференциальных уравнений, обнаружил погрешности в работах Виндау и Шина. В свази с этим возник вопрос о справедливости предложения В (на этот вопрос обратил мое внимание М. Г. Крейн).

В настоящей заметке показано, что результат А Д. Шина может быть получен в качестве простого следствия известной теоремы (см. (7), теорема 29) теории операторов в гильбертовом пространстве, а основной результат В как у Виндау, так и у Шина является ошибочным. Вопреки утверждению В, в заметке показано, что по данным n и m ($n \le m \le 2n$) можно построить уравнение вида (1) порядка

2n с числом решений из $L_2(0,\infty)$, равным m. Результаты, полученные в настоящей заметке, основаны на некоторых общих соображе-

ниях о произведении эрмитовых операторов.

1. Следуя М. Г. Крейну и М. А. Красносельскому (8), назовем $\lambda = \lambda_0$ точкой регулярного типа оператора R, действующего в гильбертовом пространстве δ , если существует число $k_{\lambda_0} > 0$ такое, что при всех $f \in \mathfrak{D}(R)$ ($\mathfrak{D}(R)$ — область определения оператора R) имеет место неравенство

$$\| (R_0 - \lambda_0 E) f \| > k_{\lambda_0} \| f \|$$
.

Теорема 1. Пусть R и S — замкнутые эрмитовы операторы c конечными индексами дефекта и точкой регулярного типа $\lambda = 0^*$. При этих условиях оператор SRS (с областью определения, состоящей из элементов, допускающих последовательное применение операторов S, R, S) является замкнутым эрмитовым оператором с плотной в \mathfrak{P} областью определения и $\operatorname{Def} SRS = \operatorname{Def} R + 2\operatorname{Def} S$.

2. Введем в рассмотрение эрмитовы операторы, действующие в $L_{2}(0, \infty)$ и порожденные квази-дифференциальными выражениями $l(\psi)$ порядка 2n, определяемыми равенствами (см. (9))

$$\begin{split} \psi^{[0]} &= \psi, \quad \psi^{[k]} = \frac{d\psi^{[k-1]}}{dt} \quad (k=1,\,2,\,\ldots,\,n-1), \quad \psi^{[n]} = p_0 \frac{d\psi^{[k-1]}}{dt} \;, \\ \psi^{[n+k]} &= -\frac{d\psi^{[n+k-1]}}{dt} + p_k \psi^{[n-k]} \quad (k=1,\,2,\,\ldots,\,n), \qquad l\psi = \psi^{[n]}, \end{split}$$

где $p_k = p_k(t)$ (k = 0, 1, ..., n) — вещественные измеримые функции,

удовлетворяющие условиям
$$\int\limits_0^a \frac{dt}{\mid p_0(t)\mid} < \infty$$
, $\int\limits_0^b \mid p_k(t)\mid dt < \infty$

 $(k=1,\,2,\,\ldots,\,n)$ при любом a $(0\leqslant a\leqslant\infty)$. Если функции $p_k(t)$ (k = 0, 1, ..., n) n - k-кратно дифференцируемы, то для 2n-кратно дифференцируемых функций $\psi(t)$ можно $l(\psi)$ записать в форме (см. (9)):

$$I(\psi) = \sum_{k=0}^{n} (-1)^k D^k p_{n-k} D^k \psi \qquad \left(D^k = \frac{d^k}{dt^k}\right).$$

Определение. Пусть L — замыкание оператора, определенного на функциях $\varphi(t)$, удовлетворяющих условиям:

- а) $\varphi(t) \equiv 0$ при $t > a_{\varphi}$ $(0 \leqslant a_{\varphi} < \infty)$; б) $\varphi(t)$, $\varphi^{[1]}(t)$, ..., $\varphi^{[2n-1]}(t)$ абсолютно непрерывны; в) $\varphi(0) = \varphi^{[1]}(0) = \dots = \varphi^{[2n-1]}(0) = 0$

и относящего функции $\varphi(t)$ функцию $l(\varphi)$. Оператор L естественно назвать минимальным квази-дифференциальным оператором, порожденным 1.

Теорема 2. Сопряженный оператор L* имеет своей областью определения множество функций $\psi(t)$, удовлетворяющих условиям: а) $\psi(t)$, $\psi^{[1]}(t)$,..., $\psi^{[2n-1]}(t)$ абсолютно непрерывны; б) $\psi(t)$ и $l(\psi)$ принадлежат $L_2(0,\infty)$ и $L^{\bullet}\psi = l\psi$.

^{*} Лефектные числа каждого из операторов R, S равны вследствие наличия вещественной точки регулярного типа (6), они обозначаются соответственно через Def R, Def S.

В силу теоремы 2 число линейно независимых решений уравнения (1), принадлежащих L_2 (0, ∞), совпадает с дефектным числом (дефектные числа L равны вследствие вещественности p_{n-k} ($k=0,1,\ldots,n$)) минимального оператора L, порожденного l. Поэтому предложение A эквивалентно следующей теореме.

Теорема 3. Дефектное число т квази-дифференциального оператора L порядка 2n удовлетворяет неравенству $n \leqslant m \leqslant 2n$.

Правая часть неравенства непосредственно следует из теоремы 2. Доказательство левой части основано на рассмотрении числа измерений $D(L^*)$ по модулю $\mathfrak{D}(L)$ (см. (7), определение 16).

Для индекса дефекта \mathfrak{m}_1 , \mathfrak{m}_2 квази-дифференциального оператора, порожденного квази-дифференциальным выражением π ю бого по-

рядка (см. (3)), точно так же получим $m_1 + m_2 \gg k$.

Ниже, руководствуясь теоремой 1, мы приведем пример дифференциального оператора четвертого порядка с минимальной областью определения и непосредственным вычислением убедимся в том, что его индекс дефекта есть (3, 3), вопреки результату Виндау — Шина.

3. Норму функций $\varphi(t) \in L_2(0,\infty)$ будем обозначать знаком $\| \varphi \|$ в

отличие от абсолютной величины $| \varphi(t) |$.

Положим

$$l_4 = pDp(D^2 - 1)pDp \qquad \left(D = \frac{d}{dt}\right),$$

где
$$p=p\left(t\right)=1+t$$
 (таким образом, $\frac{1}{p\left(t\right)}\in L_{2}\left(0,\infty\right)$ и $\left\|\frac{1}{p}\right\|=1$).

Теорема 4. Число решений уравнения $l_4 y = \lambda y$ при $\text{Im } \lambda \neq 0$ принадлежащих $L_2(0, \infty)$, равно трем.

Доказательство. Прежде всего заметим, что $\lambda=0$ является точкой регулярного типа оператора L_4 , порожденного выражением l_4 . Поэтому (см. (8)) достаточно установить, что число решений уравнения $l_4 y=0$ в классе $L_2(0,\infty)$ равно трем. Нетрудно найти фундаментальную систему решений этого уравнения:

$$y_1(t) = \frac{1}{p(t)}, \quad y_2(t) = \frac{1}{p(t)} \int_0^t \frac{1}{p(s)} e^{-s} ds, \quad y_3(t) = \frac{1}{p(t)} \int_0^t \frac{1}{p(s)} e^{s} ds,$$

$$y_{4}(t) = \frac{1}{p(t)} \int_{0}^{t} \frac{1}{p(s)} \left[e^{s} \int_{0}^{s} \frac{e^{-\tau}}{p(\tau)} d\tau - e^{-s} \int_{0}^{s} \frac{e^{\tau}}{p(\tau)} d\tau \right] ds = y_{41}(t) - y_{42}(t).$$

Очевидно.

$$y_1(t) \in L_2(0, \infty), \quad y_2(t) \in L_2(0, \infty), \quad y_3(t) \in L_2(0, \infty).$$

Полагая далее

$$\mathbf{Y} = \int_{0}^{\infty} \frac{e^{-\tau}}{p(\tau)} d\tau,$$

получим

$$y_{42}(t) = \frac{1}{p(t)} \int_{0}^{t} \frac{1}{p(s)} e^{(\theta-1)s} \left[\int_{0}^{s} \frac{d\tau}{p(\tau)} \right] ds \leqslant \frac{1}{2} \frac{\ln^{2}(1+t)}{1+t} \in L_{2}(0, \infty) \quad 0 < \theta < 1),$$

$$\gamma y_3(t) - y_{41}(t) = \frac{1}{p(t)} \int_0^t \frac{e^s}{p(s)} \left[\int_s^\infty \frac{e^{-\tau}}{p(s)} d\tau \right] ds =$$

$$= \frac{1}{p(t)} \int_0^t \frac{ds}{p(s) p(\tau_s)} < \frac{1}{p(t)} \int_0^t \frac{ds}{p^2(s)} < \frac{1}{p(t)} \in L_2(0, \infty).$$

Следовательно,

$$\gamma y_3(t) - y_4(t) \in L_2(0, \infty).$$

Примечание. Если L_1 , L_2 и L — операторы, порожденные самосопряженными квази-дифференциальными выражениями l_1 , l_2 и $l=l_1l_2l_1$ соответственно, то

$$\operatorname{Def} L \geqslant \operatorname{Def} L_1 L_2 L_1. \tag{2}$$

Теорема 5. Пусть $l_1 = -ipDp$, где p = 1 + t и $l_2 = D^2 - 1$. При этих условиях минимальный дифференциальный оператор L порядка 2n, порождаемый выражением $l_1^{m-n}l_2^{c_{n-m}}l_1^{m-n}$ ($n \le m \le 2n$), имеет индекс дефекта (m, m).

На основании неравенства (2) для доказательства теоремы 5 достаточно установить, что уравнение $l_1^{m-n} l_2^{2n-m} l_1^{m-n} y = 0$ имеет 2n-m линейно независимых решений, лежащих вместе со своей линейной оболочкой (за исключением функции, тождественно равной нулю) вне $L_2(0,\infty)$.

Нетрудно видеть, что такой линейной оболочкой является 2n-m-мерное пространство функций

$$\varphi(t) = \frac{1}{p(t)} \int_{0}^{t} \frac{dt_{1}}{p^{2}(t_{1})} \cdot \int_{0}^{t_{1}} \frac{dt_{2}}{p^{2}(t_{2})} \cdots \int_{0}^{t_{m-n-1}} \frac{P(t_{m-n})}{p(t_{m-n})} e^{t_{m-n}} dt_{m-n},$$

где P(s) — произвольный многочлен степени 2n-m-1.

Поступило 18 XI 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Weyl, Math. Ann., 68 (1910). ² Н. Windau, Math. Ann., 83 (1921).
³ Д. Шин, Математ. сб., 7 (49):3 (1940). ⁴ Д. Шин, ДАН, 18, № 8 (1938). ⁵ Д. Шин, ДАН, 28, № 5 (1940). ⁸ Д. Шин, Математ. сб., 13 (55):1 (1943). ⁷ J. v. Neumann, Math. Ann., 102 (1929). ⁸ М. Г. Крейн и М. А. Красносельский, Усп. математ. наук, 2, в. 3 (19) (1947). ⁹М. Г. Крейн, Математ. сб., 21 (63):3 (1947).