ИССЛЕДОВАНИЕ ОБОБЩЕННОГО УРАВНЕНИЯ АВТОКОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Ю.А. Рудченко

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Научный руководитель Луковников В.И.

Эффективность применения безредукторного электропривода возвратновращательного (колебательного) движения с мягким реверсом обусловлена тем, что он позволяет не только уменьшить металлоемкость и исключить электромеханические удары в рабочей машине, но и осуществить плавное оперативное регулирование частоты и амплитуды колебаний, облегчить интеграцию привода с рабочим инструментом, повысить динамические и энергетические показатели, а значит, в целом повысить производительность рабочей машины и качество выпускаемой продукции.

Цель работы заключается в создании математического обеспечения для анализа и синтеза условий возникновения, устойчивости и бифуркаций автоколебаний в однофазном и трехфазном электродвигателе, для его выбора в качестве силового элемента стенда испытания пружин.

Опуская предварительные математические преобразования, запишем обобщенное уравнение автоколебательного движения асинхронного электродвигателя (АД) с линейной пружиной на валу в канонической форме

$$\ddot{\varphi} + \varphi = -\mu_2 Sign \, \dot{\varphi} + \mu_3 + (\mu_4 - \mu_1) \, \dot{\varphi} + \mu_5 \, \dot{\varphi}^2 - \mu_6 \, \dot{\varphi}^3, \tag{1}$$

где φ , φ , φ — относительная угловая координата положения вала АД и ее первая (скорость) и вторая (ускорение) производные по относительному времени; μ_1 , μ_2 — коэффициенты нагрузки жидким и сухим трением; μ_3 , μ_4 , μ_5 , μ_6 — коэффициенты полиномиальной аппроксимации механической характеристики АД.

Это уравнение обобщенное, так как оно описывает автоколебательное движение трехфазного АД, а при $\mu_3 = 0$, $\mu_5 = 0$ и однофазного АД.

Поскольку в правой части уравнения (1) имеются постоянная составляющая

 (μ_3) и квадратичная зависимость ($\mu_5 \varphi^2$), то ожидается автоколебательное движение со смещением нейтрали колебаний. Далее будем ограничиваться в этом движении нулевой и первой гармоническими составляющими и в связи с этим упростим и запишем уравнение (1) в виде

$$\ddot{\varphi} + \varphi = (\mu_3 + \frac{1}{2}\mu_5) - \mu_2 Sign \varphi + (\mu_4 - \mu_1) \varphi - \mu_6 \varphi^3.$$
 (2)

Представим уравнение (2) сначала в виде системы двух уравнений

$$\begin{cases} \varphi = v, \\ v = (\mu_3 + \frac{1}{2}\mu_5) - \varphi - \mu_2 Signv + (\mu_4 - \mu_1)v - \mu_6 v^3, \end{cases}$$

а затем делением второго уравнения на первое в виде дифференциального уравнения интегральных кривых

$$\frac{dv}{d\varphi} = \frac{1}{v} \left[(\mu_3 + \frac{1}{2}\mu_5) - \varphi - \mu_2 Signv + (\mu_4 - \mu_1)v - \mu_6 v^3 \right]. \tag{3}$$

Анализом уравнения (3) поставим условия возникновения, устойчивости и бифуркаций автоколебательного движения.

Проинтегрируем (3) для начальных условий φ_0, v_0

$$\int_{\nu_0}^{\nu} v \ dv = \int_{\varphi_0}^{\varphi} \left[(\mu_3 + \frac{1}{2} \mu_5) - \varphi - \mu_2 Sign \nu + (\mu_4 - \mu_1) \nu \right] - \mu_6 \nu^3 d\varphi,$$

и получим

$$(\nu^2 - \nu_0^2) + (\varphi^2 - \varphi_0^2) - 2(\mu_3 + \frac{1}{2}\mu_5) \cdot (\varphi - \varphi_0) = \Omega(\varphi), \qquad (4)$$

где интеграл, учитывающий влияние сил диссипации и подпитки равен

$$\Omega(\varphi) = 2 \int_{\varphi_0}^{\varphi} [-\mu_2 Sign v + (\mu_4 - \mu_1) v - \mu_6 v^3] d\varphi.$$

В установившемся режиме силы подпитки и диссипации компенсируют друг друга, тогда $\Omega(\phi)=0$ и уравнение (4) сводится к системе уравнений

$$\begin{cases} (v^{2} - v_{0}^{2}) + (\varphi^{2} - \varphi_{0}^{2}) - 2(\mu_{3} + \frac{1}{2}\mu_{5}) \cdot (\varphi - \varphi_{0}) = 0, \\ \int_{\varphi_{0}}^{\varphi} [-\mu_{2} Sign v + (\mu_{4} - \mu_{1})v - \mu_{6} v^{3}] d\varphi = 0. \end{cases}$$
(5)

Первое уравнение описывает фазовые траектории свободного движения подпружиненной системы, представляющие собой окружности со смещенным центром в точку с координатами $v_{\rm q}=0,\, \varphi_{\rm q}=\mu_3+\frac{1}{2}\,\mu_{\rm 5}$ и радиусом

$$v_m = \varphi_m = \sqrt{v_0^2 + [\varphi_0 - (\mu_3 + \frac{1}{2}\mu_5)]^2}$$
.

Они же справедливы и для установившегося движения АД с маятником на валу, нагруженного диссипативными силами, при условии их компенсации активным электромагнитным усилием «подкачки», когда выполняется второе уравнение системы (5).

Это уравнение по существу описывает условия возникновения предельных циклов автоколебаний и позволяет установить взаимосвязь между начальными условиями пуска (φ_0 , v_0), нагрузкой (μ_1 , μ_2), параметрами АД и его электропитания (μ_3 , μ_4 , μ_5 , μ_6), определяющую существование этих циклов.

Вид фазовой траектории говорит о том, что закон автоколебаний имеет вид

$$\varphi = (\mu_3 + \frac{1}{2}\mu_5) + \sqrt{v_0^2 + [\varphi_0 - (\mu_3 + \frac{1}{2}\mu_5)]^2} \cdot Sin(\tau + arctg\frac{\varphi_0}{v_0}).$$
 (6)

Интеграл $\Omega(\phi)$ будет равен нулю, поскольку при компенсации сил диссипации силами подпитки будет равна нулю подынтегральная функция.

Прямой подстановкой (6) во второе уравнение (5) получим на основе гармонического баланса по первой гармонике

$$-\frac{4}{\pi}\mu_2 + (\mu_4 - \mu_1)\varphi_m - \frac{3}{4}\mu_6\varphi_m^3 = 0.$$
 (7)

Уравнение (7) точно совпадает с подобным уравнением, полученным в [1] методом Ван дер Поля. Это, во-первых, подтверждает правильность принятого в данной работе подхода, а во-вторых, позволяет непосредственно пользоваться бифуркационными диаграммами, найденными в [1], при анализе и синтезе условий возникновения, устойчивости и управляемости автоколебательного движения, как в однофазном, так и в трехфазном АД.

Преимущество предлагаемого нами метода решения обобщенного уравнения (1) над методом Ван дер Поля заключается в том, что он позволяет, как видно из (6), ввести в уравнения кроме связи параметров нагрузки, АД и его электропитания еще и начальные условия пуска (φ_0 , v_0), которые существенно влияют на получение устойчивого автоколебательного режима.

Литература

1. Луковников В.И., Веппер Л.В. Исследование автоколебательного движения однофазного асинхронного электродвигателя с линейной пружиной на валу //Вестник ГТТУ им. П.О. Сухого. — 2001. — № 2. — С. 33-42.

КОМПЛЕКСНЫЙ ДАТЧИК ПОТЕРИ ПИТАНИЯ СИНХРОННОЙ ДВИГАТЕЛЬНОЙ НАГРУЗКИ

А.Г. Баранов

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Научный руководитель Курганов В.В.

В настоящее время большое внимание уделяется разработке быстродействующего ABP (БАВР) синхронной двигательной нагрузки как наиболее эффективному способу обеспечения устойчивости синхронных двигателей (СД). Успешное срабатывание БАВР с учетом применения быстродействующих выключателей возможно при соблюдении следующих условий: 1) оперативное обнаружение потери питания (ПП) СД; 2) определение по начальным параметрам выбега эквивалентного СД (ЭСД) моментов времени, когда включение возбужденных СД на резервный источник питания безопасно по условию тока и электромагнитного момента включения.

Известные способы фиксации потери питания ЭСД предусматривают сравнение фаз, частот или амплитуд напряжений и токов двух взаимнорезервируемых секций шин. Недостатком этих способов [1, 4] является недопустимая для ответственных потребителей инерционность. Так, используемые в настоящее время в схемах РЗиА реле направления мощности типа РМ – 11 и РМ –12 имеют следующие общие недос-