Довлады Академии Наук СССР 1948. Том LX, № 9

ФИЗИКА

Член-корреспондент АН СССР А. АЛИХАНЯН, А. ВАЙСЕНБЕРГ, В. ХАРИТОНОВ и М. ДАЙОН СПЕКТР МАСС ВАРИТРОНОВ НА ВЫСОТЕ 3250 м НАД УРОВНЕМ МОРЯ

Летом 1946 г. в лаборатории космических лучей на горе Алагез мы произвели магнитный анализ импульсов частиц космического излучения. Разработанная нами для этой цели методика телескопа из счетчиков Гейгера-Мюллера, помещенного в магнитном поле, дала

возможность одновременно с измерением импульса частицы определять пробег в плотных поглотителях, например в свинце. Результаты этого исследования были опубликованы зимой 1946/47 г. в ряде заметок (1-3), в которых мы высказали утверждение, что в той части излучения, которая поглощается в 5,4 см свинца, имеются частицы обоих знаков, масса которых больше 200 m_e (m_e — масса электрона). Для объяснения всего наблюдавшегося нами интервала импульсов (0,9·10⁹----1,8·10⁹ е V/с) и пробегов (2,4 — 5,4 см Рb) необходимо было допустить существование по меньшей мере двух частиц с массами *m* = 500 *m_e* и *m* = 1000 *m_e*. Дальнейший анализ наших данных в области импульсов больших, чем 0,9.10⁹ eV/с, позволил утверждать, что в космических лучах присутствуют также частицы обоих знаков, масса которых больше массы протона (³). Определение массы этих частиц находилось на пределе наших экспериментальных возможностей и мы смогли грубо оценить величины массы, указав, что значение массы, лежащее в пределах 3000-5000 me, согласуется с наблюдаемыми значениями пробегов и импульсов. Мы предложили назвать эти новые частицы варитронами (²). Из наших измерений следовало, что число варитронов, поглощающихся в 5,4 см

Рb, составляет 10% жесткой компоненты на высоте 3250 м. Летом и осенью 1947 г. мы продолжали исследование варитронов на горе Алагез, усовершенствовав предварительно метод исследований.

На рис. 1 схематически показан разрез нашего прибора в плоскости магнитного отклонения. Как и в приборе 1946 г., совпадение разрядов в счетчиках рядов I, II, III создавало "мастерный импульс", управлявший работой схемы. Нам удалось удвоить разрешающую способность прибора, применив специальные счетчики диаметром 0,6— 0,7 см. Второе изменение в приборе заключалось в добавлении IV ряда координатных счетчиков. Это изменение существенно, так как, во-первых, наличие IV ряда позволяет произвести проверку каждой индивидуальной траектории с точки зрения того, не образована ли она боковыми или рассеянными частицами. Для правильной траекто-

рии. образованной прохождением одной частицы через ряды I. II, III, знание координат a, b, c (рис. 1) позволяет определить коор-III и IV пластинки свинца толc'. Помешая над оядами линату щиной около 1 см. мы

значительно увеличиваем вероятность фиксании случаев размножения частиц по сравнению с первой молелью прибора. Далее. наличие ряда IV позвовылелить ляет лва интервала пробегов $(d_1 < R < d_1 + d_2$ и $d_1 + d_2 < R < d_1 + d_1$ $-d_2+d_3$) вместо одного. Как и раньше, для проверки того, играет ли роль рассеяние от полюсов магнита. Ha полюса были наложены счетчики (рис. 1, Р). Кроме того, щель магнита с обеих сторон закрывалась рядами счетчиков S с целью исключить ложные траектории, образованные боковыми частицами. В табл. 1 даны схемы опытов 1947 г.

Все изученные нами траектории можно разбить на две группы: траектории частиц, застрявших в одном из поглотителей d_1, d_2 или

d_а (мягкая компонента), и траектории частиц, прошедших все три поглотителя и вызвавших разряд в V ряду счетчиков (жесткая компонента). В настоящей заметке рассматриваются только траектории, входящие в состав мягкой компоненты.

Таблица 1

Рассмотрим спектр отклонений
частиц мягкои компоненты в опыте
№ 2. На рис. 2 и 3 изображен спектр
тех частиц мягкой компоненты, ко-
торые прошли через пластину 0,8 см,
но поглотились в пластине 1,05 см.
Мы видим, что спектр отклонений
состоит из отдельных, четко разгра-
ниченных максимумов, происхожде-
ние которых можно легко объяснить.
В самом деле, во второй пластине
свинца ($d_2 = 1,05$ см Pb) поглощаются
частицы данной массы. Импульсы кото-

No Фильтр d, d. d_{a} нал ус 01114 BCM в см Рь в см РЬ новксй TS Pb в см Рь 1 0 2,4 3,0 0 1,05 2,4 $\frac{2}{3}$ 0,8 0 1,15 5,0 3,0 0 1,05 4 0,8 10 1,15 5 0,8 1,15 1,15 206 64 r/cm2C 0 2,4 3,0

рых лежат между значениями p_1 и p_2 , отвечающими минимальному и максимальному пробегу 0,8 и 1,85 см Рь. В спектре отклонений действие пластин скажется в появлении максимумов, левый край которых отвечает максимальному пробегу, а правый — минимальному!

Ширина максимума определится шириной 01 интервала импульсов. вырезаемого данным -Наличие фильтром. 0 большого числа максимумов на кривой рис. 2 н и З указывает на наличие спектра масс в космическом

излучении. При определении масс мы воспользовасоотношением ЛИСЬ "пробег — импульс", в известном данным обзоре Росси и Грейзена. Переход от отклонений к импульсам производился по формуле $pc = k/\delta$, где δ отклонение в см. Вычисленный по формуле $k = 150 \text{ Hl}^2$ (⁵), коэфравен фициент k 1,5·10⁹ eV·см.

Определение массы производилось нами по положению левого края максимума (на рис. 2 и 3 они указаны сплошными стрелками *). В спектрах положительных частиц всегда наблюдается резко выраженный максимум, отвечающий значению т == = 2000 m_e. Не подлесомнению, ЧТО ЖИТ этот максимум соответствует протону. Мы воспользовались ИМ для градуировки нашего прибора. Получающееся при этом из различных спектров значение постоянной к лежит в пределах 1,3-1,5 · 109 eV.см. Мы принимаем для определения импульса зничение k ==1,4.10° eV.см, что находится в хорошем

* Пунктирные стрелки на рисунках отвечают ми нимальному импульсу частицы данной массы при данной толщине фильтра.

над про- м Рb ц	3,6>/ + + 220 350 550	550 550 550	0.4 b H B 5,6> 5,6> 210 350 350 350 860 800	ш о й г № 1 Гет Гет 210 2210 320 320 500 600	M a c 150 150 2700 2700 2700 2700 6680	25,6 2160 2100 250 250 250 250 250 250 250 250 250 2	пек +++ 220 350 520	T P 0 0,0 1,2 1,2 1,2 1,2 1,2 1,2 1,2 0,0 0,0 0,0 0,0 0,0 0,0 1,2 1,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	HIAT HHC 2000 3320	TTTT No. 21 3.6 3.6 5.0 450 550 550 550	210	1 20	++++++++++++++++++++++++++++++++++++++	>0,8 	OIIBIT Her + + 3,0>/ + 110 140 3102	№ 3 № 3 № 3 № 3 № 3 250 320 530 320 530 630	A BI 110 1110 1110 1110 1110 1110 1110 11	210 2210 330 420	2,4/ 1100 1140	H - 000	er Ně + + + + + + + + + + + + + + + + + +	4 4 4 1 110 110 110 110 110 110 110 110	етр Угаерод 64 г/см² 54>R>0 + + 140 220 220 830	330 330	Олыт Сви 113 г. 113 г. 113 г. 200 330 800	Au 5 Au 5 Can ² Can ² Can ² (Can ² Can ² Can ² Can ² Can ² (Can ² Can	
	1840 3400 8000	950 12007 22007	1840 3500 8000	1200 3500	13.0	2 1200 3000 7000	1840 3500 8000	3500 8000	1840 3500 8000	1600		1	3600	2200 3600 2000	1840 3800 2000	14002			1840 3500 8000	1300	1100	1400	1840	3500	20000	950	

согласии с вычисленным значением 1,5·10⁹ eV·см. В табл. 2 даны полученные нами значения масс и указано, в каком спектре данная масса обнаружена. В этой же таблице приведены значения масс, полученных из анализа спектра импульсов жесткой компоненты, а также значения масс варитронов, полученные на большом масс-спектрометре (⁴).

Многие массы проявляются не на всех спектрах, причем на спектрах положительно заряженных частиц массы разрешаются хуже чем на спектрах отрицательно заряженных частиц. Эго объясняется при-

сутствием в первых большого максимума, соответствующего протонам, который смазывает соседние с ним, значительно менее интенсивные максимумы. Из табл. 2 видно.

большинство что масс, обнаруженных с помощью малого масс - спектрометра, было найлено и на большом масс-спектрометре. Масса 110 m, была найдена только на малом спектрометре. Из кривой рис. 2 следует

также присутствие в спектре масс частиц с массой около 10-20 000 m.

Производимое нами определение массы частиц основано на предположении об ионизационном характере их торможения. Лучшим доказательством справедливости этого предположения является, во-первых, само существование максимумов на спектральных кривых, а во-вторых, то, что смещение положения левых краев максимумов при переходе от поглотителей одной толщины к поглотителям другой толщины находится в соответствии с ионизационными потерями энергии.

Итак, нами установлено существование дискретного спектра масс и доказано существование на высоте 3250 м протонной компоненты. Благодаря увеличению разрешающей способности прибора нам удалось установить также присутствие частиц с массой 100 и 150 m_e. Существование частиц с массой 100 m_e находит подтверждение в недавно появившейся работе (⁶). Авторы этой работы обнаружили в конце трека медленного положительного мезотрона, затормозившегося в газе, наполняющем камеру Вильсона, след позитрона, энергия которого равна 24 MeV. Естественнее всего предложить, что в этом случае мы имеем дело с распадом частиц с массой 100 m_e на электрон и нейтрино.

Институт физических проблем Академии Наук СССР и Физический институт Академии Наук Арм. ССР

Поступило 29 IV 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А.Алиханян, А. Алиханов и А. Вайсенберг, Докл. АН АрмССР, 5. № 5, 129 (1946). ² А. Алиханян, А. Алиханов и А. Вайсенберг, Вести. АН СССР, № 5, 15 (1947). ³ А. Alichanian, А. Alichanow and A. Weissenberg, J. Phys., 11, № 2, 199 (1947). ⁴ А. Алиханян, А. Алиханов, В. Морозов, Г. Мусхелишвили и А. Хримян, ДАН, 58. № 7 (1947). ⁵ А. Алиханян, А. Алиханов и А. Вайсенберг, ЖЭТФ, 18, № 3 (1948). ⁶ С. D. Апdетson, R. D. Adams, P. Lloyd and R. R. Rau, Phys. Rev., 72, № 8, 724 (1947).

1518