BY 10052 C1 2007.12.30

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

(54)

РЕСПУБЛИКА БЕЛАРУСЬ

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

- (19) **BY** (11) **10052**
- (13) **C1**
- (46) **2007.12.30**
- (51) MIIK (2006) C 08L 63/00 C 08J 5/16

КОМПОЗИЦИЯ ДЛЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ

- (21) Номер заявки: а 20051064
- (22) 2005.11.03
- (43) 2007.08.30
- (71) Заявитель: Учреждение образования "Белорусский государственный университет транспорта" (ВY)
- (72) Авторы: Богданович Сергей Павлович; Байдак Алексей Александрович; Кириленко Виталий Петрович (ВҮ)
- (73) Патентообладатель: Учреждение образования "Белорусский государственный университет транспорта" (ВY)
- (56) BY 7013 C1, 2005.

Струк В.А. и др. Материалы. Технологии. Инструменты. - 2002. - Т. 7. -

№ 3. - C. 53-65.

US 4767802, 1988.

US 4996085, 1991.

RU 2154658 C1, 2000.

SU 529196, 1976.

SU 1376544 A1, 1991.

(57)

Композиция для антифрикционного покрытия, включающая эпоксидную диановую смолу, эпоксидную алифатическую смолу, графит, стеарат алюминия и в качестве отвердителя полиэтиленполиамин, отличающаяся тем, что дополнительно содержит нанодисперсный наполнитель при следующем соотношении компонентов, мас. ч.:

эпоксидная диановая смола	100
эпоксидная алифатическая смола	60-70
графит	5-9
стеарат алюминия	0,8-1,2
полиэтиленполиамин	30-34
нанодисперсный наполнитель	1-5.

Изобретение относится к области машиностроения, а именно к созданию новых машиностроительных материалов, которые могут быть использованы в качестве покрытия на направляющие скольжения и другие детали узлов трения металлорежущих станков, работающие при реверсивном движении и в режиме "пуск-остановка". Поверхности трения таких деталей изнашиваются наиболее интенсивно при переходе от трения покоя к трению скольжения. Это обусловлено существенной разницей между величинами динамического и статического коэффициентов трения.

Известна композиция для нанесения антифрикционных покрытий на основе эпоксидной диановой смолы, наполненной дисульфидом молибдена, графитом, тальком, базальтовой мукой и цинковой пылью, отверждаемая цианэтилированным полиамином [1]. Известна также композиция для антифрикционного материала на основе эпоксидной диановой смолы, наполненной дисульфидом молибдена, скрытнокристаллическим графитом и цирконатом свинца, отверждаемая моноцианэтилдиэтилентриамином [2].

BY 10052 C1 2007.12.30

Недостатками данных композиций являются: низкая твердость, содержание дорогостоящих компонентов, недостаточно высокие триботехнические характеристики. Кроме того, пастообразная консистенция указанных композиций не позволяет формировать покрытия методом свободной заливки, что требует осуществления дополнительных операций по шлифованию и доводке покрытий, особенно нецелесообразных при восстановлении изношенных поверхностей крупногабаритных деталей.

Известна также композиция для антифрикционных покрытий на основе эпоксидной диановой смолы, наполненной бутилглицидиловым эфиром, графитом, гюлиметилсилоксаном и полиметилфенилсилоксаном, отверждаемая моноцианэтилдиэтилентриамином [3].

Недостатком известного материала является низкая твердость и недостаточно высокие триботехнические характеристики.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемой является композиция для антифрикционных покрытий на основе эпоксидной диановой смолы, наполненной алифатической эпоксидной смолой, графитом, стеаратом алюминия, отверждаемая полиэтиленполиамином [4].

Недостатком известного материала является низкая твердость и невысокие триботехнические характеристики, в частности значительная разница в величинах статического и динамического коэффициентов трения. Эта разница является причиной возникновения скачкообразного движения при трении и повышенного износа поверхностей трения сопрягаемых тел в зонах, где скорость относительного движения равна нулю. В итоге это приводит к существенному снижению срока службы трибосопряжения.

Задачей изобретения является повышение твердости и износостойкости материала.

Поставленная задача достигается тем, что композиция для антифрикционного покрытия, включающая эпоксидную диановую смолу, эпоксидную алифатическую смолу, графит, стеарат алюминия и в качестве отвердителя полиэтиленполиамин, дополнительно содержит нанодисперсный наполнитель при следующем соотношении компонентов, мас. ч.:

эпоксидная диановая смола	100
эпоксидная алифатическая смола	60-70
графит	5-9
стеарат алюминия	0,8-1,2
полиэтиленполиамин	30-34
нанодисперсный наполнитель	1-5.

Композицию получают путем смешения при 18-25 °C эпоксидной диановой смолы и эпоксидной алифатической смолы с последующим введением в смесь графита, стеарата алюминия и нанодисперсного наполнителя. Полиэтиленполиамин вводят в композицию непосредственно перед применением.

В составе композиции используют эпоксидную диановую смолу ЭД-20 (ГОСТ 10587-94), эпоксидную алифатическую смолу Э-181 (ТУ Π -206-68), графит Γ Л (ГОСТ 5420-74), алюминий стеариновокислый (ТУ 6-09-4308-76), нанодисперсный наполнитель и полиэтиленполиамин дистиллированный (ТУ 6-02-1099-83). Нанодисперсный наполнитель представляет собой ультрадисперсную керамику на основе оксидов, размер частиц которой 50-100 нм, а удельная поверхность 10-55 M^2 /г [5].

Антифрикционное покрытие получают путем свободной заливки композиции в зазор, образованный предварительно очищенной и обезжиренной поверхностью детали и обработанной до необходимой чистоты поверхностью оправки, покрытой слоем антиадгезива. Толщина отвержденного покрытия составляет 1,5-2,5 мм. Отверждение происходит при 20,5 °C в течение 18 часов. Оптимальных характеристик материал покрытия достигает через 96 часов после заливки.

В табл. 1 приведены примеры рецептур состава по изобретению, в табл. 2 -физикомеханические свойства составов по изобретению и известного.

BY 10052 C1 2007.12.30

Таблица 1

Компоненты	Состав, мас. ч.			
Teomionem is	1	2	3	
Эпоксидная диановая смола ЭД-20	100,0	100,0	100,0	
Эпоксидная алифатическая смола Э-181	60,0	64,0	70,0	
Графит	5,0	7,0	9,0	
Стеарат алюминия	1,2	1,0	0,8	
Нанодисперсный наполнитель	1,0	2,0	5,0	
Полиэтиленполиамин	30,0	32,0	34,0	

Композиции по примерам получали по описанной выше технологии. Испытания по определению триботехнических характеристик проводили на машине трения МПТ-1 по методикам Института механики металлополимерных систем НАН РБ (ИММС, г. Гомель) без смазочного материала. Контртелом служил цилиндрический индентор диаметром 23 мм из чугуна СЧ-12. Коэффициенты трения определяли при $v=0.04\,$ мм/с и трех значениях давления: 0.7; 4.5; $10\,$ МПа. Твердость композиции определяли по ГОСТ 9031-75.

Таблица 2

	Составы				
Свойства	Предлагаемый по примеру		Известный по a.c. 1376544 (прототип)	Известный по заявке а 20020244	
	1	2	3	4	5
Твердость по Бринеллю, МПа	320	345	345	220	320
Линейная интенсивность изнашивания материала, 10 ⁻⁹	0,7	0,3	0,5	2,16	1,13
Линейная интенсивность изнашивания контртела (чугун СЧ-12), 10 ⁻⁸	0,9	0,9	0,8	1,4	0,8
Коэффициент трения покоя	0,14	0,15	0,16	0,22	0,15
Коэффициент трения скольжения	0,13	0,14	0,15	0,17	0,14

Разработанная композиция позволяет получать на поверхностях деталей, например, на направляющих металлорежущих станков, износостойкое покрытие, обладающее высокими триботехническими характеристиками в условиях обедненной смазки и обеспечивающее за счет небольшой разницы в величинах статического и динамического коэффициентов трения и высокой твердости равномерный износ материала вдоль поверхности покрытия.

Источники информации:

- 1. SU 760691, MITK C 08L 63/02, 1982.
- 2. SU 1381956, MITK C 08L 63/02, 1991.
- 3. SU 1376544, MIIK C 08L 63/02, 1991.
- 4. Заявка РБ а 20020244, 2003.
- 5. Струк В. А. и др. Наноматериалы и нанотехнологии для машиностроения. Материалы, технологии, инструменты. 2002. № 3. С. 53-65.