ФИЗИОЛОГИЯ РАСТЕНИЙ

Ф. Л. ЩЕПОТЬЕВ

ЛИСТОПАД И РОСТ ОБЫКНОВЕННОГО ДУБА В СВЯЗИ С КАЧЕСТВЕННО РАЗЛИЧНЫМ ОСВЕЩЕНИЕМ В УСЛОВИЯХ КОРОТКОГО ДНЯ

(Представлено академиком В. Н. Сукачевым 1 111 1948)

Многими исследователями (2, 6—10, 13) установлено влияние качественно различного освещения на рост древесных растений и переход к репродуктивному состоянию многих травянистых в фотопериодической реакции. Вопросы же, связанные с действием различных лучей солнечного освещения на листопад и переход древесных к периоду покоя, еще не выяснены.

В связи с этим летом 1917 г. нами были начаты опыты по влиянию качественно различного освещения на продолжительность вегетационного периода и рост обыкновенного дуба (Quercus robur L.).

Опыты были заложены на лесопитомнике в г. Купянске Харьковской обл. Жолуди местного происхождения были посеяны 20 IV 1947г., появление всходов отмечено во второй половине мая, опыт начат 22 VI и окончен 1 VII 1947 г. Опытные растения при этом подвергались воздействию 5-часового фотопериода в течение 10 дней; одна часть сеянцев дуба получала короткий день в утренние часы, с 6 до 11 час. утра, вторая — в дневные, с 11 час. утра до 4 час. дня, и третья группа растений имела светлый период суток в вечернее время, с 4 час. дня до 9 час. вечера. Растения изолировались от света посредством ящичных изоляторов с вентиляционными приспособлениями. В течение вегетационного периода над сеянцами дуба проводились фенологические наблюдения и обмеры.

Начало осеннего пожелтения листьев у опытных и контрольных растений отмечено было в первых числах сентября, начало листопада—в конце сентября. Результаты наблюдений, представленные в табл. 1, показывают, что качественно различное освещение светлой части суток оказывает большое влияние на переход сеянцев обыкно-

венного дуба к периоду покоя.

Влияние это различно по силе и характеру и зависит от качества света. Так, утренний свет и вечерний содействуют более раннему окончанию вегетации сеянцами дуба, освещение же средины дня задерживает вегетацию, растягивая ее на неопределенно долгий

срок.

В то время как сеянцы обыкновенного дуба, получавшие утреннее освещение в течение 10 дней, почти полностью перешли в октябре к периоду покоя (листья пожелтели и засохли, большинство опало), растения, подвергавшиеся воздействию света средины дня в течение такого же срока, имели в это же время вегетирующие листья темнозеленой окраски и несколько более крупных размеров, чем листья контрольных и других опытных растений.

Число листьев однолетних сеянцев обыкновенного дуба, имеющих желтую осеннюю окраску (в $^{0}/_{0}$ от числа исследованных листьев в каждом варианте опыта)

Время освещения растений	Наблюде- ние 15 IX 1947	Наблюдение 15 X 1947			
		М	m	$\frac{M_k - M_n}{\sqrt{m_k + m_n^2}}$	
Утро	45,0	98,7	1,29	8,79	
День	0,0	0,03	0,04	23,50	
Вечер	33,3	93,1	4,98	8,34	
Контроль, полный день	20,0	47,8	2,02		

Рис. 1. Вид однолетних сеянцев обыкновенного дуба, получавших короткий фотопериод в различное время светлой части суток. Слева — растения, освещаемые в средине дня; справа — в вечернее время суток. Фото 16 X 1947 г.

Полученные данные совершенно достоверны, так как $\frac{M_k - M_n}{V m_a + m_n}$ значительно больше 3. На рис. 1 и 2 показан вид контрольных и опытных растений дуба, получавших качественно различное освещение.

Рис. 2. Слева—вид контрольных однолетних сеянцев обыкновенного дуба. выросших на полном, естественном дне; справа—сеянцы, получавшие утром 5-часовой фотопериод в течение 10 дней. Фото 16 X 1947 г.

Различный по качеству свет оказывает значительное влияние и

на рост обыкновенного дуба (табл. 2).

Из этих данных видно, что сеянцы, получавшие лучи дневного спектра, быстро прекращали рост в высоту и в дальнейшем в течение вегетационного периода роста не имели. Как показывают сравнительные данные июньского и октябрьского обмеров, высота растений этого варианта опыта осталась к осени неизменной. Наилучшие условия в смысле роста в высоту имели сеянцы дуба, находив-

Характеристика роста однолетних сеянцев обыкновенного дуба в зависимости от качественно различного освещения

						-			
	Дата наблюдения								
Время ссвещения растений	22 VI Высота		9 VII		17 X				
			iri,	010	Высота				
	СМ	в % от контроля	Число растений, окончивших рост (в % от общего числа сеянцев в каждом вари-вате)	Наличие второго прироста	СМ	в % от контроля	в % от высоты сеянцев в июне внутри каждого ва-		
Утро	8,08	87,5	63,6	есть	8,99	81,2	111,2		
День	10,77	116,7	100,0	нет	10,77	97,2	100,0		
Вечер	10,76	116,6	92,3	есть	12,28	111,0	114,1		
Контроль, полный день	9,23	100,0	54,9	есть	11,07	100,0	119,9		

шиеся под воздействием вечернего освещения суток. Лучи утреннего освещения, в часы, принятые в нашем опыте, оказывают также угнетающее действие на рост сеянцев, как и лучи средины дня. Кроме того, в этом опыте следует учитывать влияние на энергию роста очень короткого фотопериода, а также и довольно значительную продолжительность его действия.

Таким образом, наблюдается различие в росте стебля и листьев дуба под влиянием освещения их в средине дня лучами, в основном не поглощаемыми хлорофиллом (5) и, следовательно, не используемыми в фотосинтезе. Десятидневная продолжительность воздействия этими лучами в нашем опыте сказалась угнетающе на росте стеблей и оказала стимулирующее действие на жизнедеятельность листьев.

Следовательно, принятое нами время воздействия дневным освещением оказалось избыточным для роста стебля в высоту и не является предельным для нормальной жизнедеятельности листьев.

Связь осеннего пожелтения листьев и листопада у древесных растений с изменениями длины светлой части суток доказана многими исследователями (1, 3, 11, 14). Из полученных данных видно, что при относительно длительном воздействии коротким днем на виды древесных листопад наступает у них значительно ранее, нежели у растений, росших в условиях полного естественного дня.

Принятая в нашем опыте одинаковая продолжительность действия (10 дней) 5-часового короткого фотопериода для опытных растений в утреннем, дневном и вечернем вариантах не оказывает решающего влияния на переход сеянцев дуба к периоду покоя. Основная роль в этом принадлежит различному спектральному составу света в период светлой части суток.

Таким образом, распространенное мнение о сокращении вегетационного периода у многолетних растений и более раннем наступлении листопада у них под влиянием короткого дня представляется в свете вышеизложенного не совсем точным. Не вообще короткий день зименяет вегетационный период растений в нужном нам направлении, но только тот короткий фотопериод, в котором преобладает действие соответствующих лучей солнечного спектра.

Если на растения в условиях короткого дня действует свет утреннего или вечернего времени суток, богатый длинноволновыми лучами,

растения раньше переходят к периоду покоя, как это и имеет место в наших опытах с обыкновенным дубом; и наоборот, если растения подвергаются влиянию солнечного освещения в средине дня, спектр которого богат коротковолновыми лучами, вегетационный период их

сильно растягивается.

В связи с этим находят себе объяснение и результаты опытов Γ . М. Псарева (12) с соями и Е. Р. Гюббенет (4) с деревом какао. Короткий день в опытах этих исследователей, вопреки многочисленным данным, не уменьшал, а увеличивал продолжительность вегетационного периода, что зависело, по мнению Γ . М. Псарева, главным образом от количественного изменения ростового вещества в тканях листа, а по нашему мнению, происходило лишь вследствие более сильного влияния коротковолновой радиации дневного освещения. Это вытекает и из данных Γ . М. Псарева. Так, при увеличении короткого 8-часового дня до 10 и 12 час. за счет утреннего и вечернего освещения вегетационный период опытных растений резко сокращался и наступал листопад; при сокращении же короткого дня, т. е. при использовании главным образом коротковолновых лучей средины дня, пожелтения листьев не наблюдалось.

Украинский научно-исследовательский институт агролесомелнорации и лесного хозяйства Харьков

Поступило 28 П 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. Богданов, Тр. и исследов. по лесн. хозяйству, в. 10 (1931). ² R. B. Witrow and H. M. Benedict, Plant Physiology, 11 (1936). ³ W. W. Garner and H. A. Allard, J. Agric. Research, 23 (1923). ⁴ E. P. Гюббенет, Боган. журн. СССР, 25, № 6 (1940). ⁵ Л. А. Иванов, Свет и влага в жизни наших древеных пород, М.-Л., 1946. ⁶ В. М. Катунский, ДАН, 15, № 8 (1937). ⁷ Ф. Г. Кириченко и М. А. Бассарская, Яровизация, № 2 (1937). ⁸ А. А. Кузьменко, Журн. Инст. бот. АН УССР, 13—14 (1937); ДАН, 23, № 2 (1939). ⁹ В. П. Мальчевский, Тр. Лабор. свето-физиол. Физ.-агроном. инст., 1 (1938). ¹⁰ Ф. Мацков, Зб. робіт з агрофізіології, 1 (1936). ¹¹ Б. С. Мошков, Тр. по прикл. бот., ген. и сел., 23, № 2 (1939). ¹³ В. И. Разумов, Тр. по прикл. бот., ген. и сел., сер. III, № 3 (1933). ¹⁴ Ф. Л. III с - потьев, ДАН, 56, № 4 (1947).