Доглады Академин Наук СССР 1948. Том LX, № 4

МИНЕРАЛОГИЯ

л. г. ченцова и н. е. веденеева

ЗАКОНОМЕРНОСТИ РАСПАДА КРАСЯЩИХ ЦЕНТРОВ В КРИСТАЛЛАХ ДЫМЧАТОГО ЬВАРЦА

(Представлено академиком С. И. Вавиловым 9 III 1948)]

Настоящее сообщение имеет в виду расширить экспериментальную базу для более обоснованных, чем до сих пор, суждений о природе окраски дымчатого кварца. Поэтому мы ограничиваемся эдесь выводами эмпирического характера, считая достаточно доказанным лишь то, что красящие центры приурочены к местам дефектов, вызванных атомарно дисперги ованными примесями в решетке кварца.

Кристаллы кварца в природном и искусственно облученном состоянии исследовались в виде полированных плоско-параллельных пластинок. Как видно из данных табл. 1, мы старались по возможности разнообразить исследуемый материал.

Таблица 1

.М сбразца	Месторождение	к о прир 560 mµ	k о иск 580 mµ	мо прир но иск	d, мм	Примеч а ния
1 2 3 4 5	Гориха . Майдан Тал Мурзинка (Урал) Волынь . Мурзинка (Урал)	Бесцв. 0,05 0,33 0 27 0,21	0,51 0 53 0 78 0,42 0,23	0 0 10 0,42 0,65 0,91	1.84 3 01 2,01 6,07 3,62	**
1	Волынь	0,28 0,28	1,02 1, 0 6	0,26	0 51 0 51	* α – β
T D	Волынь	0 29 0,29	0 52 0,61	0,48	0,51 0,51	α β

Пометка * означает, что кристалл облучен в 1929 г. (остальные — в 1947 г.). Условия облучения в 1939 и 1947 гг. одинаковы и гарантируют достижение насыщения (і). Пометка α — β обозначает, что образец перед облучением проведен через $\beta \to \alpha \to \beta$ -превращение.

Спектры поглощения природной и искусственной окраски кристалла дымчатого кварца в видимом спектре совпадают и при выцветании не меняются (1). Оказалось, что спектры кристаллов, облученных 8 лет тому назад, не п етерпели изменений. На рис 1 для примера даны кривые абсорбции обеих волн (o и e) для одного из таких кристаллов. Данные получены р зными лицами и на разных приборах. Толщина d исследованных образцов дана в табл. 1. Как и раньше (2), степень выцветания оценивалась изменением оптической 8 дан, т. 60, № 4

плотности D, измеренной ступенчатым фотометром. В табл. 1 даны начальные значения коэффициентов погашения для природной и искусственной окрасок каждого образца ($k_0\!=\!D_0/d$ мм $^{-1}$) для $\lambda\!=\!560$ m μ . Для

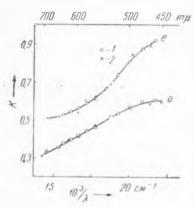


Рис. 1. Кривые абсорбции искусственно окрашенного кристалла в поляризованном свете: 1-спектрофотометр Кёниг-Мартенса, Н Е. Веденеева, 1939 г.; 2-ступенчатый фотометр, Л. Г. Ченцова, 1947 г.

построения кривых выцветания вычисля-450 ми лось по данным для 4-5 длин волн отношение k/k_0 , измеряющее концентрацию центров окраски для момента t в долях начальной. Изотермы построены в лога-

рифмическом мазштабе ординат.

Образцы испытывались в идентичных условиях нагревания. Главное внимание уделено измерениям при $251 \pm 0.5^{\circ}$ С. В некоторых случаях после 60 час. нагревания температура печи поднималась до 274° и прослеживалось выцветание при этой температуре. Измерение D производилось не реже, чем через какдые 6 час.; с этой целью нагревание прерывалось и печь охлаждалась *. Определению изотермы предшествовало осторожное прогревание до 251° и немедленное охлаждение (всего около 2 час.). Часть центров (см. ниже) при этом распадалась, и изотермы начинаются поэтому со значений $k_0 < 1$.

На рис. 2 изотерма каждого образца помечена его номером (табл. 1) со знач-

ком + в случае природной окраски. Изотерм + дано всего три (образец 1 по природе бесцветен, образец 2 почти бесцветен и из-

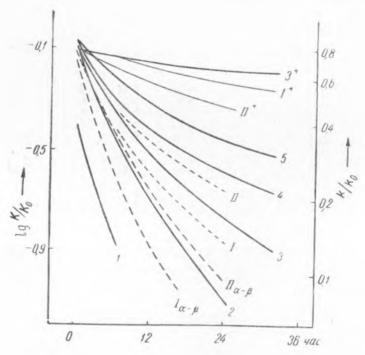


Рис. 2. Изотермы выцветания образцов с природной и искусственной окраской (табл. 1)

^{*} Опыт (°) показывает, что эти перерывы не влияют на результат 650

мерения менее надежны; к образдам 4 и 5 мы вернемся дальше). Изотермы I и II обозначены пунктиром, чтобы указать, что они построены со внесением поправки *. Поэтому в табл. 1 для образцов I и II не указано значение $k_{0\,\mathrm{прир}}/k_{0\,\mathrm{нек}}$.

Рис. 2 и 4 показывают, что искусственная окраска кристалла выцветает всегда быстрее природной. Далее: изотермы 1-5 на рис. 2

располагаются в порядке последовательности их номеров в таблице, и указывают этим на функциональную связь скорости распада искусственных центров с отношением $k_{0\,\mathrm{прир}}/k_{0\,\mathrm{Lek}}$ (образец 1 уже при предварительном нагревании теряет $60^{\circ}/_{0}$ начальной окраски). Возможно, что здесь играют роль крупные, повышающие стелень дефектности решет-

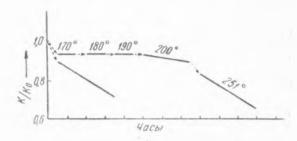


Рис. 3. Начальное выцветание при обычном и ступенчатом прогревании до 251° С

ки радиоактивные атомы, которые вызывают природную окраску (1, 3). В связи с таким предположением интересно отметить, что

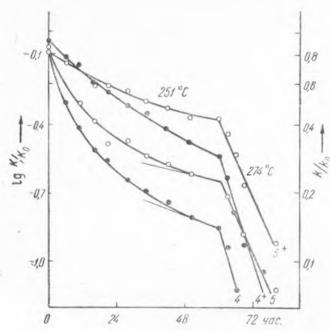


Рис. 4. Изотермы выцветания образцов 4 и 5 с поправкой на стабильные центры

изотермы с пометкой а - в лежат ниже изотерм I и II: превращение образца в α-кварц с обратным переходом в β-модификацию увеличивает скорость выцветания искусственной окраски. Наряду с этим Е. В. Цинзерлинг (4) показ но, что загрязненная примесями инертная решетка в-кварца при многократном повторении инверсии приобретает подвижность. Это свойство характерно для более чистых кристаллов, и, следовательно, при инверсии дефектность решетки снижается.

На рис. З схематически приведены данные для обычного и более детального опытов по начальному прогреванию до $t\!=\!251^\circ$ (взяты два одинаково окрашенных соседних отрезка от искусственно окрашенной пластинки). Частичная потеря центров $(6\!-\!8^0/_{\!\scriptscriptstyle 0})$ обнаружена уже при подъеме температуры до 170° . Нагревание при этой температуре (1 час) и два последующих часовых нагревания до 180 и 190° не вызвали дальнейших изменений, и только после 2-часового нагрева-

^{*} С учетом на природную окраску, так как облучение в 1939 г. было, к сожалению, проведено без предварительного обесцвечивания. Без поправки изотерма I ложится между 1 и 5, а II — между 5 и 4.

ния при 200° обнаружено уменьшение оптической плотности (4—5°/₀). Суммарная потеря центров близка к потере их параллельным образцом после непосредственного подъема температуры до 251°. Изотермическое выцветание при этой температуре (6 час.) протекало в дальнейшем у обоих образцов одинаково. Трудно объяснить такую картину, не допуская н личия довольно четко разграниченных в отношении их стабильности центров охраски.

На рис. 4 приведены изотермы образцов 4 и 5 в их полном виде, т. е. для 60 час. нагревания при 251° и 20 час. при 274°. По оси

ординат нанесены значения $\log \frac{K}{K_0} = \frac{k-k_c}{k_0-k_c}$, где k_c обозначает коэф-

фицмент погашения, относящийся к группе центров, скорость распада которых при 251° можно счит ть равной нулю. Поправка ke определялась — по чисто эмпирическим соображениям — путем нагревания испытанного образца в течение 1 часа при температуре около 300° и последующего измерения $D_c = k_c d$. Таким образом, изотермы рис. 4 (251°) можно считать относящимися только к таким центрам, в число которых не входят ни быстро отмирающие при начальном прогревании до этой температуры, ни те, что имеют заметную скорость распада только при более высоких температу ах.

Изотермы для 274° у каждого из образцов в пределах погрешностей опыта представлены двумя пагаллельными прямыми, указываюшими на одинаковую скорость распада по экспоненте. Последнее

можно сказать и о конечных участках изотерм для 251°.

Таблица 2

М образца	Месторождение	Окраска	Ti, Wac,	T, 48C.	A	В
4	Волынь	Природн. Искусств.	60 60	7 0 7 0	0,94 0,44	0 0 0 5
5	Мурзинка .	Природн. Искусств.	140 140	10 10	0.77	0,2
6	Волынь.	Природн. Искусств.	140 140	10 10	1,00 0,19	_
7	Волынь	Искусств.	60	10	0,17	0,83

Прямолинейные участки изотерм встречались нами не раз (2). Исходя из этого факта и допуская, согласно ранее сказанному, наличие достаточно разграначенных по стабильности групп центров, мы попытались представить изотермы рис. 4 в виде суммы двух прямых, вычисленных на основе формулы $K/K_0 = Ae^{-t/\tau_1} +$

+ Be^{-t/τ_a} , где au_1 имеет одинаковое значение для каждой пары изотерм, задаваемое наклоном их конечных участков, а A+B=1. Оказалось, что вычисление очень хорошо согласуется с опытом при следующих

значениях ($\pm 100/_0$) констант (габл. 2).

Чтобы придать картине больше убедительности, в таблице приведены анало ичные подсчеты для двух других образцов. Совпадение констант нельзя считать случ йным (особенно в случае менее стабильной группы центров). Надо думать поэтому, что различая в скорости выцветания искусственной и природной окраски кристалла кварца следует относить за счет газличий в относительных концентрациях небольшого числа групп центров разной стабильности.

Институт кристаллографии Академии Наук СССР

Поступило 7 111 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Е. Веденеева, Тр. Лаб. кристаллогр. АН СССР, 2, 87 (1940). ² Н. Е. Веденеева и Л. Г. Ченцова, ДАН, 55, 441 (1947). ³ Г. Г. Лемм-лейн, ДАН, 45, 272 (1945). ⁴ Е. В. Цинзерлинг, ДАН, 57, 387 (1947).