Доклады Академии Наук СССР 1948. Том LX, № 5

АГРОХИМИЯ

А. ПЕТЕРБУРГСКИЙ

О ХАРАКТЕРЕ ПИТАНИЯ РАСТЕНИЙ ЗА СЧЕТ ИОНОВ ИЗ АДСОРБЕНТОВ

(Представлено академиком Д. Н. Прянишниковым 5 III 1948)

До недавнего времени предполагали, что растения могут усваивать лишь те вещества, которые находятся в почвенном растворе. Поэтому ионы, содержащиеся в адсорбированном состоянии на коллоидальных частицах почвы, считались недоступными растениям до перехода (в результате обменных реакций) в раствор. Из этих представлений следовало, что если в среде, где развиваются корни, все питательные вещества будут сосредоточены на поверхности адсорбентов, а растворимых солей вовсе не окажется, то не должно иметь места и развитие растений, так как невозможными окажутся обменные реакции между ионами раствора и адсорбента.

Однако в последние годы опубликованы итоги опытов, показывающие, что отдельные ионы (калий, кальций и др.) могут усваиваться проростками из суспензии глин, насыщенных этими катионами (1, 2). Поскольку никаких солей к суспензиям не добавлялось, приходится допустить, что корни в состоянии самостоятельно осуществлять обменные реакции с адсорбентами *. Но может ли растение подобным путем удовлетворить свои потребности одновременно и в других катионах и анионах?

Предварительный опыт в этом направлении поставлен был автором еще в 1940 г. (³) с ячменем и овсом. Оказалось, что обе эти культуры могут развиваться при питании из адсорбированного состояния (в отсутствие растворимых солей) аммонием, калием, магнием и кальцием. Анализ урожая на К и N подтвердил доступность этих веществ растениям из адсорбента (пермутита), правда, значительно меньшую, чем из солевых растворов.

В дальнейшем автор поставил своей задачей провести опыт питания растений всеми основными катионами и анионами, предлагая их

только в адсорбированном состоянии.

В первом опыте, в песчаных культурах, выращивались проростки подсолнечника (сорт Саратовский 169) в течение 24 дней. К, Са, Мg, NO_3 , SO_4 и H_2PO_4 вносились в адсорбированном на амберлитах ** состоянии; хлорное железо, борная кислота и сернокислый марганец да-

** Препараты из искусственных смол, адсорбирующие в зависимости от подго-

товки катионы или анионы.

^{*} Во всяком случае, предположение, что катионы, адсорбированные глинами и другими минералами, могут переходить в раствор вследствие гидролиза последних, не подтвердилось для большинства адсорбентов в наших опытах.

вались в виде слабых растворов в обычных дозах *. Чтобы уяснить в случае плохого развития подсолнечника, какое из предложенных ему в адсорбированном состоянии питательных веществ недоступно, в схему опыта включены были варианты с заменой соответствующих амберлитов солями. Схема опыта и аналитические данные представлены в табл. 1 и 2. Они определенно говорят о том, что подсолнечник способен развиваться, питаясь всеми основными минеральными веществами из адсорбентов.

Таблица 1 Вес проростков подсолнечника (в гвоздушно-сухого вещества на сосуд, среднее из 2 повторностей)

	Вариант			
NM сосудов	внесено в адсорбиров. форме	внесено в растворе	Вес проростков в г	
1, 2	NO-3, SO4, H ₂ PO-4, K+, Mg++, Ca++	FeCl ₃ , H ₃ BO ₃ , MnSO ₄	$2,45 \pm 0,04$	
3, 4	То же, кроме Са ⁺⁺ и NO ⁻⁸	То же + Ca (NO₃)₂	$3,55\pm0,03$	
5, 6	То же, кроме Mg++ и	To же+MgSO ₄	$2,77 \pm 0,09$	
7, 8 9, 10 11, 12	То же, кроме K ⁺ То же, кроме H ₂ PO- ₄ То же, что в сосудах №№ 1,2, но в удвоенной дозе	То же + КСІ То же + NaH₂PO₄ То же. что в сосудах №№ 1,2	$2,62 \pm 0,02$ $2,42 \pm 0,17$ $3,12$	

Таблица 2 Вынос питательных веществ подсолнечником (в м-экв. на сосуд, среднее из 2 повторностей)

среднее из 2 повторностеи)						
Варианты опыта	N	K	Ca	Mg	SO ₄	P ₂ O ₅
Все питательные вещества, кроме микроэлементов, даны в виде амберлитов:	2,41 <u>+</u> 0,270	,51 <u>+</u> 0,05	0,82±0,02	0,18±0,01	0,66±0,11	1,01 <u>+</u> 0,02
То же, но Ca^{++} и NO^3 даны не в амберлитах, а в виде соли	1,52 <u>+</u> 0,180	,72 <u>+</u> 0,10	2,07 <u>+</u> 0,25	0,84±0,15	$0,96\pm0,02$	1,16 <u>+</u> 0,11

Всего в первом варианте опыта подсолнечником усвоено 5,59 м-экв. питательных веществ (из 19 м-экв., внесенных в сосуд). За исключением 0,66 м-экв. железа и микроэлементов, все ионы давались в адсорбированном состоянии. Отсюда по крайней мере 5 м-экв. их растение взяло из адсорбентов.

Во втором варианте опыта суммарный вынос питательных веществ подсолнечником достиг 10,27 м-экв., т. е. на 4,68 м-экв. больше. Это следствие обменных реакций, которые вызывались нитратом кальция (он дан был в количестве 6 м-экв. взамен ионов Ca и NO_3 в адсорбенте).

^{*} Песок для этого и последующего опытов подвергался обработке концентрированной соляной кислотой для удаления всех растворимых примесей. Кислота затем отмывалась водой (до исчезновения реакции на хлор-ион). Такой песок ни в водной, ни в солевой вытяжках не давал реакции на кальций, сульфат и хлор-ионы.

Второй опыт проведен был также в песчаных культурах с пшеницей Персикум, которая выращивалась до полного созревания семян. Железо, бор и марганец попрежнему вносились в виде солей, а все остальные питательные вещества или в адсорбированной амберлитами форме, или в растворах. Схема опыта представлена в табл. 3. Через 3 недели после появления всходов, когда уже видно было, что пшеница растет примерно одинаково по смеси солей и амберлитам, сосуды №№ 3, 4 и 7, 8 подверглись промыванию дестиллированной водой (в процессе промывания количество жидкости, отвечающее оптимальной влажности песка в сосудах, обновилось 4 раза).

Таблица 3 Урожай пшеницы Персикум (вгна сосуд, среднее из 2 повторностей)

ММ сосудсв	Варианты опыта	Зерно	Солома
1, 2 3, 4	Нормальная солевая смесь	7,15 <u>+</u> 0,99	19,13 <u>+</u> 0,33
5, 6	ды промыты 3 л дестиллиров. воды Все питательные вещества, кроме микроэлементов, даны в адсорбированной форме в	0.46 + 0.29	5,48±1,28
7, 8	виде смеси амберлитов	3,70 <u>+</u> 0,74	9,78±0,33
9, 10 11, 12	воды	$3,03\pm0,27$ $2,95\pm0,30$	$9,05 \pm 1,00$ $10,85 \pm 0,70$
	микроэлементов, дано в адсорбированной форме в виде смеси амберлитов	0,75±0,27	4,70 <u>+</u> 0,98

Анализы средних проб промывной жидкости показывают близкие величины кислотности (рН) для обоих вариантов опыта. Различия же в количестве вымытых водой веществ были весьма велики: очень много из сосудов №№ 3, 4 и совсем мало из сосудов №№ 7, 8.

Последствия промывки по-разному проявились на растениях из обоих вариантов опыта: наблюдалось резкое ухудшение роста пшеницы в сосудах \mathbb{N}_{2} 3, 4 и не отмечено почти никакого изменения к худшему в сосудах \mathbb{N}_{2} 7, 8.

Учет урожая представен в табл. 3. Вес зерна и соломы в сосудах $\mathbb{N}_{2}\mathbb{N}_{2}$ 1, 2 (с нормальной солевой смесью) был почти вдвое больше, чем в сосудах $\mathbb{N}_{2}\mathbb{N}_{2}$ 5, 6 (все питательные вещества, кроме микроэлементов, в адсорбированной форме). Промывание водой катастрофически понизило урожай (особенно зерна) в сосудах $\mathbb{N}_{2}\mathbb{N}_{2}$ 3, 4 (солевая смесь), но почти не отразилось на урожае в сосудах $\mathbb{N}_{2}\mathbb{N}_{2}$ 7, 8 (адсорбенты).

Вынос азота и зольных элементов урожаем пшеницы представлен в табл. 4. Общее количество питательных веществ, унесенных пшеницей из сосудов $\mathbb{N}_2\mathbb{N}_2$ 1, 2, достигает 55,9% от внесенного; для сосудов $\mathbb{N}_2\mathbb{N}_2$ 5, 6 (адсорбенты) эта величина составляет 25,9%.

Но меньшая доступность растениям ионов из адсорбентов вовсе не то же самое, что полная их неусвояемость, как принято было считать до сих пор. Правда, железо, бор и марганец в наших опытах добавлялись в растворимом состоянии. Они могли вызывать обменные реакции и тем переводить часть адсорбированных ионов в раствор. Однако нельзя забывать, что мы давали железа и обоих микроэлементов в сумме лишь 3,3 м-экв. на сосуд, в то время как макроэлементов 95 м-экв. Принимая даже, что все количество железа и микроэлементов поглощалось амберлитами и вытесняло в раствор другие ионы, мы все же получим менее $^{1}/_{7}$ того количества их, которое фактически усвоено пшеницей из адсорбентов (24,63 м-экв.).

Вынос питательных веществ урожаем пшеницы (в м-экв. на сосуд среднее из 2 повторностей)

COCYAOB	Варианты опыта	N	К	Ca	Mg	SO	P2O3
1-2	Нормальная со-	18,30 <u>+</u> 3,14	12,35±1,1	17,16±0,0°	72,35 <u>+</u> 0,0	6,03 <u>±</u> 0,0	6,95±0,4
56	Все питательные вещества, кроме микроэлементов, даны в виде адсорбентов	8,19 <u>±</u> 0,12	4,83 <u>+</u> 0,5	72,24±0,60	01,40±0,0	08 3,25±0,0	06 4,72±0,0

В песке после уборки урожая в водной вытяжке определялись рН и кальций. В сосудах $\mathbb{N}_{2}\mathbb{N}_{2}$ 5, 6 (адсорбенты) реакция оказалась кислее, а кальция в 10,5 раз меньше, чем в сосудах $\mathbb{N}_{2}\mathbb{N}_{2}$ 1, 2 (солевая питательная смесь).

В связи с этим дополнительно в солевой вытяжке (с нейтральным $1,0\ N$ хлористым натрием) определялась потенциальная кислотность. Она была в 3 раза выше в сосудах с адсорбентами, нежели с солевой питательной смесью. Не говорит ли это о накоплении в адсорбентах водорода в обмен на отдаваемые растению катионы, ибо поглощение корневой системой ионов из твердой фазы непосредственно может иметь место, повидимому, только в обмен на H^+ и HCO^-_3 выдыхаемой угольной кислоты?

Агрохимическая опытная станция им. Д. Н. Прянишникова Тимирязевской сельскохозяйственной академии Поступило 3 III 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Петербургский, Доклады Тимирязевской с.-х. акад., в. 5 (1947). ² Е. И. Ратнер и Т. А. Акимочкина, Рефераты н.-и. работ биолог. отд. АН СССР за 1945 г., М., 1947. ³ А. В. Петербургский, Изв. АН СССР, сер. биол., в. 6 (1942).