$$v = \rho c \lambda / (2k^2 a) \cos \overline{\eta} (\cos \overline{\eta} + \sin \overline{\eta}) \int_{T_c}^{T_K(s)} \frac{T_K - T_c}{F^2 (T_K)} dT_K . \tag{12}$$

Здесь учтено, что $F(T_c) \approx \mu \approx 1$. Получив с использованием выражения (12) иничение $\overline{\mu}$ для заданной скорости резания, выбираем силу и ее составляющие, которые соответствуют этому $\overline{\mu}$ (на единицу ширины срезаемого слоя).

Расчет по предложенной методике удобно осуществлять с применением ЭВМ, используя стандартные подпрограммы для численного интегрирования и решения нелинейных уравнений. Приведенные на графике (рис. 2) зависимости силы резания и ее составляющих от скорости резания при обработке детали из стали 45 (толщина среза a=0,2 мм, ширина среза b=2 мм) достаточно близки к реальному процессу.

ЛИТЕРАТУРА

1. Зорев Н.Н. Расчет проекций сил резания. — М., 1958. — 56 с. 2. Куцер В.М. Анализ процесса ортогонального резания с учетом переменных свойств обрабатываемого материала // Машиностроение. — Мн., 1988. — Вып. 13. — С. 8—15. З. L е е Е.Н., S h a ffer B.W. The theory of plasticity applied to a problem of mashining // Trans. ASME: J. Appl. Mech. — 1951. — No 18. — Р. 405—413. 4. Резников А.Н. Теплофизика резания. — М., 1969. — 288 с. 5. Третья ков А.В., Трофимов Г.К., Гурьянова М.К. Механические свойства сталей и сплавов при пластическом деформировании. — М., 1971. — 64 с.

УДК 621.941.025

м.и. михайлов

КОНТАКТНЫЕ НАПРЯЖЕНИЯ НА ОПОРНОЙ ГРАНИ РЕЖУЩЕЙ ПЛАСТИНЫ СБОРНОГО ИНСТРУМЕНТА

Дальнейшая автоматизация машиностроительного производства невозможна без автоматизации проектирования оснастки и режущего инструмента, которая требует совершенствования и разработки математических моделей, описывающих показатели прочности и жесткости сборных инструментов. Анализ работ [1, 2] по расчету контактных напряжений в сборном инструменте показывает, что еще недостаточно уделяется внимания анализу связи контактных напряжений с конструктивными и технологическими особенностями инструмента. Кроме того, использованные методики не позволяют учесть всех особенностей сборного инструмента. В настоящее время находит применение численный метод расчета контактных напряжений [3].

Рассмотрим методику расчета на примере канавочного резца. С целью упрощения он проводился по этапам: расчет контактных напряжений между ложементом (подкладкой) и державкой; расчет контактных напряжений между режущей пластиной и ложементом с заменой действия державки контактными напряжениями, полученными из расчетов предыдущего этапа.

Эти расчеты производились по единой математической модели. Для их реализации были разработаны расчетные схемы (рис. 1).

На рис. 1, a представлена схема для реализации расчетов первого этапа с выступающей из резцедержателя частью державки 3 (продольное сечение), ложементом 2 и режущей пластиной 1.

В левой части рис. 1, a изображена схема закрепленного резца, действие прихвата заменено распределенной нагрузкой q_1 , а зажимных винтов резцедержки — силами $P_1 - P_4$. В процессе резания под влиянием внешней силовой нагрузки $(P_z$ и P_y) все элементы системы к репления получают относительные

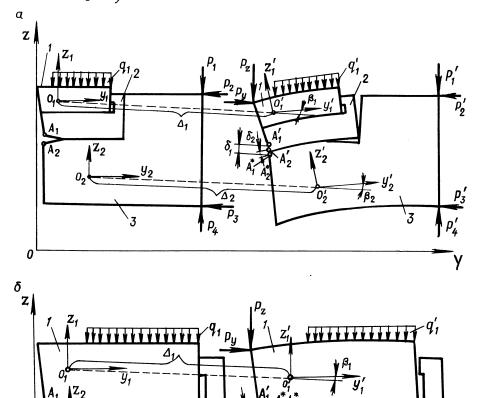


Рис. 1. Схема к расчету контактных напряжений: a — между державкой и ложементом; δ — между режущей пластиной и ложементом

0

ď,

перемещения от деформаций и относительных поворотов (правая часть рис. 1,a). Для определения относительных перемещений на ложементе и державке были выбраны точки A_1 и A_2 , которые под действием сил резания в результате координатных поворотов и смещений займут положения A_1' и A_2' , а за счет деформаций системы крепления перейдут соответственно в точки A_1^* и A_2^* . Проекции перемещений, вызванных координатными поворотами и смещениями, на оси общей системы координат ZOY выражаются следующим образом:

$$\begin{split} Z\left(A_{i}^{\prime}\right) &= Z\left(A_{i}\right) + \Delta_{iz}\;;\\ Y(A_{i}^{\prime}) &= Y(A_{i}) + \Delta_{iy}\;, \end{split}$$

где Δ_{iy} и Δ_{iz} — проекции перемещений Δ соответственно на оси Y и Z; $\Delta_{iz} = \Delta_i \cos \beta_j$; $\Delta_{iy} = \Delta_i \sin \beta_j$; β_j — угол поворота системы координат $Z_j O_j Y_j$ относительно общей системы координат ZOY; i — порядковый номер рассматриваемых точек (i=1,2).

Проекции перемещений, вызванных деформациями системы крепления пластин, на оси общей системы координат можно выразить следующим образом:

$$Z(A_i^*) = Z(A_i') - u_i;$$

 $Y(A_i^*) = Y(A_i') - v_i,$

где u_i и v_i — компоненты перемещений δ_i соответственно вдоль осей Z_j и Y_i .

Принимая во внимание, что условия касания точек имеют вид $Y(A_1^*) = Y(A_2^*), Z(A_1^*) = Z(A_2^*),$ и учитывая связь между системами координат, получим условия совместности перемещений для контактирующих точек державки и ложемента:

$$\begin{cases} Y(A_1) - Y(A_2) = \Delta_{1y} - \Delta_{2y} - \sum_{i=1}^{2} (-1)^i (v_i \cos \beta_j) - u_i \sin \beta_j); \\ Z(A_1) - Z(A_2) = \Delta_{1z} - \Delta_{2z} - \sum_{i=1}^{2} (-1)^i (-v_i \sin \beta_j + u_i \cos \beta_j), \end{cases}$$
(1)

где $Y(A_i)$ и $Z(A_i)$ — координаты точек тел в ненагруженном состоянии.

Так как система сил, действующих на резец, известна, перемещения точки A_i , на его поверхности можно определить с помощью функций влияния (функции Грина):

$$\int v_{i} = \int_{\xi_{d}}^{\xi_{b}} K_{\sigma}^{(v)}(A, \xi) \sigma(\xi) d\xi + \sum_{m=1}^{n} K_{p}^{(v)}(A, y_{p}) P_{jm};$$
(2)

где $K_{\sigma}^{(\upsilon)}$ (A,ξ) , $K_{\sigma}^{(u)}$ (A,ξ) — функции влияния напряжений σ_N на перемещения точек A_i соответственно в направлениях осей Y и Z под действием силы, приложенной в точке ξ ; $K_p^{(\upsilon)}(A,y_p)$, $K_p^{(\upsilon)}(A,z_p)$ — функции влияния сил P_{jm} , отображающие перемещения точек A_i соответственно в направлениях осей Z и Y от единичной силы, приложенной в этих же точках.

Уравнения равновесия системы будут иметь вид (силы трения не учитываются):

$$\begin{split} &\sum\limits_{m=1}^{n}P_{jmy}=e\int\limits_{z_{ja}}^{z_{jb}}\sigma_{N}dz\;;\\ &\sum\limits_{m=1}^{n}P_{jmz}=e\int\limits_{y_{jb}}^{y_{jb}}\sigma_{N}dy\;;\\ &\sum\limits_{m=1}^{n}M_{j}\left(P_{jm}\right)=e\int\limits_{y_{ja}}^{y_{jb}}\sigma_{N}ydy+e\int\limits_{z_{ja}}^{z_{jb}}\sigma_{N}zdz\;, \end{split}$$

где P_{jmy} и P_{jmz} — проекции внешних сил P_{jm} на оси Y и Z; j,m — соответственно номер тела и силы; σ_N — контактные напряжения; y_{ja} и z_{ja} — координаты начала площадки контакта в системе координат $Z_j O_j Y_j$; y_{jb} и z_{jb} — координаты конца площадки контакта; e — ширина пластины.

Подставив соотношения (2) в условия (1), получим систему интегральных уравнений. С помощью этой системы и уравнений равновесия можно найти неизвестные напряжения в зонах контакта, размеры этих зон, координатные повороты и перемещения резца. При определении этих параметров в условиях различия площадей касания полученная система интегральных уравнений может быть решена только численно. Для этого примем допущения о наличии дискретного контакта между пластиной и ложементом и разделим зону контакта на ряд одинаковых зон Δt_i (i=1,2,...,k), а неизвестную функцию распределения контактных напряжений аппроксимируем ступенчатым законом с постоянными напряжениями в зоне i-й точки контакта. В этом случае уравнения примут вид (j=1,2):

$$\begin{cases}
 n & \sum_{jmy} P_{jmy} = e \sum_{jmi} \sigma_{i} \Delta t_{iz}; \\
 m = 1 & i = 1
\end{cases}$$

$$\begin{cases}
 n & \sum_{jmz} P_{jmz} = e \sum_{jmi} \sigma_{i} \Delta t_{iy}; \\
 m = 1 & i = 1
\end{cases}$$

$$\begin{cases}
 n & \sum_{jmi} M_{j}(P_{jm}) = e \sum_{jmi} (z_{i} \Delta t_{iz} + y_{i} \Delta t_{iy}). \\
 m = 1 & i = 1
\end{cases}$$

$$(3)$$

Уравнения (2) можно переписать в виде (l = 1, 2, ..., k)

$$v_{ji} = \sum_{i=1}^{k} K_{jil}^{(v)} \sigma_{il} \Delta t_{l} + \sum_{m=1}^{n} K_{jiP}^{(v)} P_{jm} ;$$

$$u_{ji} = \sum_{i=1}^{k} K_{jil}^{(v)} \sigma_{il} \Delta t_{l} + \sum_{m=1}^{n} K_{jiP}^{(u)} P_{jm} ,$$

$$u_{ji} = \sum_{i=1}^{k} K_{jil}^{(v)} \sigma_{il} \Delta t_{l} + \sum_{m=1}^{n} K_{jiP}^{(u)} P_{jm} ,$$
(4)

где $K_{jil}^{(u\cdot)}$ и $K_{jil}^{(\upsilon)}$ функции влияния, отображающие перемещения соответственно в направлении осей Z_j и Y_j точки тела j в сечении i от единичной силы, приложенной в сечении l .

Эти функции определялись методом конечных элементов. Записывая уравнения (1) с учетом равенства (4) для i площадок (i=1,2,...,k), получим систему из k уравнений с k+1 неизвестными. Решая эту систему совместно с уравнениями равновесия (3), определяем неизвестные контактные напряжения, которые будут использованы при расчете второго этапа — определении контактных напряжений между режущей пластиной и ложементом (рис. 1,6).

В левой части рис. 1, δ ложемент 2 и режущая пластина 1 находятся в услочиях зажима, а в правой — в условиях резания, т.е. нагружения силами резания. Пи них выбраны точки A_1 и A_2 при условии несплошного контакта (при силошном контакте эти точки можно выбрать на задней поверхности режущей иместины и ложемента). Расчет был произведен по методике, описанной выше.

При исследовании контактных напряжений устанавливалось влияние толщины срезаемого слоя и модуля упругости ложемента на значения и характер или пипряжений. В первом случае к режущей кромке резца прикладывались пипы резания, полученные по известной методике [4]. Анализ рис. 2, a покавиния, что от толщины срезаемого слоя зависят значение и характер изменения контактных напряжений, а также длина l контактирующего участка. При милых голщинах срезаемого слоя (a = 0.1; 0,2 мм) длина контакта режущей пластины и ложемента увеличивается, что объясняется большим влиянием на контактные напряжения сил зажима пластины. С увеличением толщины срезаемого слоя (a = 1...1,6 мм) контактные напряжения со стороны режущей

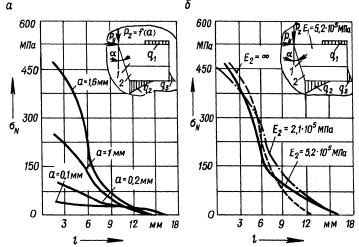


Рис. 2. Распределение контактных напряжений по длине контакта в зависимости от толщины срезаемого слоя (а) и модуля упругости материала (б)

кромки резко возрастают, а с обратной стороны от режущей кромки уменьшаются до нуля из-за координатных поворотов, перемещений и деформаций режущей пластины с ложементом. Это связано с различием физико-механических характеристик режущей пластины и лежемента, а также с характером и местом приложения нагрузки. При определении влияния физико-механических характеристик ложемента на контактные напряжения в расчетной схеме (рис. $\hat{1}$, a, $\hat{\sigma}$) модуль упругости ложемента должен иметь значения = $2,1\cdot10^5$ МПа (для конструкционной стали), $E_2=5,2\cdot10^5$ МПа (для твердого сплава) и $E_2 = \infty$. Анализ рис. 2, σ позволяет заключить, что такое изменение модуля упругости приводит к незначительному изменению контактных напряжений, благодаря чему можно использовать пожемент из термообработанной конструкционной стали.

ЛИТЕРАТУРА

1. Новосе пов Ю.А., Михай пов М.И. Расчет контактных напряжений на опорных площадках режущей пластины сборных резцов // Машиностроение. - Мн., 1983. -Вып. 8. - С. 3-5. 2. Х а е т Г.Л. Прочность режущего инструмента. - М., 1975. - 164 с. 3. Жемочкин Б.Н., Синицын А.П. Практические методы расчета фундаментных балок и плит на упругом основании. - М., 1962. - 284 с. 4. 3 о р е в Н.Н. Исследование элементов механики процесса резания. - М., 1952. - 178 с.