МАТЕМАТИКА

и. я. акушский

НЕКОТОРЫЕ ОПЕРАЦИОННЫЕ ЦИКЛЫ ТАБУЛЯТОРА, СВЯЗАННЫЕ С ПРЕДСТАВЛЕНИЕМ ЧИСЕЛ В ДВОИЧНОЙ СИСТЕМЕ

(Представлено академиком Н. Г. Бруевичем 28 XII 1947)

В работе (1) были определены операционные циклы табулятора вертикально-горизонтального действия и рассмотрены некоторые важные для приложений циклы. Здесь мы продолжим рассмотрение циклов, причем основную роль будут играть циклы, приводящие к выполнению на табуляторе своеобразного умножения, опирающегося на представление одного из сомножителей по двоичной системе.

Для упрощения последующих рассмотрений мы введем обозначение $(\sigma_t)_t$ $(t=1,2,\ldots)$, означающее последовательное выполнение t

раз операции $\sigma_i \rightarrow \sigma_i$.

Рассмотрим следующий цикл (двухсвязный — участвуют счетчики σ_1 и σ_2): $r_{1, m} = (\sigma_1)_{t_1, m}$; $r_{2, m} = \sigma_2 \Rightarrow \sigma_1$; $r_{3, m} = (\sigma_1)_{t_2, m}$; $r_{1, m} = \sigma_2 \Rightarrow \sigma_1$; . . . ; $r_{2\xi-1, m} = (\sigma_1)_{t_\xi, m}$; $r_{2\xi, m} = \sigma_2 \Rightarrow \sigma_1$.

В результате получаем:

$$a_{1}^{m} = \left\{ \left\{ \dots \left\{ \left[\left(2^{t_{1,m}} a_{1}^{0} + a_{2}^{0} \right) 2^{t_{2,m}} + a_{2}^{0} \right] 2^{t_{3,m}} + a_{2}^{0} \right\} \dots \right\} 2^{t_{5,m}} + a_{0}^{2} = 2^{t_{1,m+t_{2,m}+\dots+t_{\xi,m}}} a_{1}^{0} + a_{2}^{0} \left(2^{t_{2,m}+t_{3,m}+\dots+t_{\xi,m}} + 2^{t_{3,m}+\dots+t_{\xi,m}} + \dots + 2^{t_{\xi,m}} + 1 \right).$$

Полагая $a_1^0 = a_2^0 = N$, мы видим, что в результате осуществления описанного цикла мы получаем произведение заданного числа N на нечетное число

$$M = 2^{t_{1, m} + t_{2, m} + \dots + t_{\xi, m}} + 2^{t_{2, m} + \dots + t_{\xi, m}} + \dots + 2^{t_{\xi, m}} + 1.$$

Пусть число M может быть представлено по двоичной системе в виде

$$M=2^{k_1}+2^{k_2}+\ldots+2^{k_{\xi}}+1 \quad (k_1>k_2>\ldots>k_{\xi}).$$

Тогда, решая систему уравнений

$$t_{l,m} + t_{l+1,m} + \ldots + t_{\xi,m} = k_l \ (l=1,2,\ldots,\xi),$$

мы определяем нужные нам числа $t_{1, m_3} \dots, t_{\xi, m}$, характеризующие параметры шагов цикла, а именно:

$$t_{\xi,m} = k_{\xi}, \quad t_{\xi-1,m} = k_{\xi-1} - k_{\xi}, \quad t_{\xi-2,m} = k_{\xi-2} - k_{\xi-1}, \ldots, t_{1,m} = k_1 - k_2.$$

В случае M четного из описанного цикла исключается последний шаг $r_{2\xi, m}$.

Таким образом, для умножения на число M надо разложить M по двоичной системе и задать параметры $t_{1,\,m},\,t_{2,\,m},\,\ldots,\,t_{\xi,\,m}$. Задание параметров может быть осуществлено различными путями. Нами при реализации подобных циклов применялось задание параметров специальной серией карт $\pi_{1,\,m},\,\pi_{2,\,m},\,\ldots,\,\pi_{\xi,\,m}$, где карта $\pi_{j,\,m}\,\,(j=1,\,\ldots,\,\xi)$ содержала номер j и число $t_{j,\,m}$. При прохождении карты $\pi_{j,\,m}$ на специальном контрольном счетчике σ_K откладывается $t_{j,\,m}\,\,$ (в комплементном виде), после чего возникает серия ходов $\sigma_1 \rightarrow \sigma_1$, и с каждым таким ходом в σ_K прибавляется 1. Когда в σ_K во всех разрядах устанавливается 9 (т. е. через $t_{j,\,m}\,\,$ ходов), прекращаются передачи $\sigma_1 \rightarrow \sigma_1$ и возникает ход $\sigma_2 \rightarrow \sigma_1$, после чего под блок $\sigma_2 \rightarrow \sigma_3$ подходит карта $\sigma_{j+1,\,m}\,\,$ на $\sigma_K\,\,$ фиксируется $\sigma_{j+1,\,m}\,\,$ и все происходит аналогично рассмотренному.

Так как нельзя считать, что всегда возможно в табуляторе использовать какой-либо из счетчиков в качестве контрольного без значительного переустройства табулятора, мы рассмотрим еще и другие способы реализации множительного цикла, не связанные с введением

контрольного счетчика.

Пусть нам надо помножить число N на $M=2^t\varepsilon_t+2^{t-1}\varepsilon_{t-1}+\dots+2^t\varepsilon_q+\dots+2^t\varepsilon_q+\dots+2^t\varepsilon_1+\varepsilon_0$. Образуем серию из t+1 вспомогательных карт $\pi_t, \pi_{t-1}, \dots, \pi_q, \dots, \pi_1, \pi_0$ — массив μ . Карта π_q содержит в группе колонок g номер q ($q=0,1,\dots,t$) и в колонке λ — значение ε_q , отображающееся надсечкой при $\varepsilon_q=1$ и отсутствием надсечки при $\varepsilon_q=0$. Вводим счетчики σ_1 и σ_2 и устанавливаем в счетчике σ_2 число N. Передачу $\sigma_2 \to \sigma_1$ мы коммутируем не непосредственно, а через селектор S, соединяя гнезда головок счетчика σ_2 с контактами ряда C селектора C0 и выводя соответствующие контакты ряда C1. Тогда передача C2 может быть осуществлена в том и только в том случае, когда селектор C3 будет находиться в положении C3.

Вводим управление селектором S по колонке λ и пропускаем на табуляторе массив μ , расположенный в порядке убывания номера q, с тем, чтобы при прохождении карты π_q совершалась передача (через селектор S) $\sigma_2 \to \sigma_1$, а после прохождения каждой карты π_q (за исклю-

чением последней π_0) возникал ход $(\sigma_1)_1$.

Прежде всего установим следующее. Ход, реализующий передачу $\sigma_2 \to \sigma_1$ через селектор S приводит к установке в счетчике σ_1 числа $N\varepsilon$, где $\varepsilon=1$ или O в зависимости от того, был ли селектор S на этом ходу в положении C-X или C-NX. Учитывая содержание карт массива μ , мы можем сказать, что при прохождении карты π_q на счетчик σ_1 поступает число $N\varepsilon_q$. Таким образом, сопоставляя это обстоятельство с результатом ходов $(\sigma_1)_1$, мы получаем после исчерпания всех карт массива μ в счетчике σ_1 число

$$\{ \dots \{ \{ [(N\varepsilon_{t}2 + N\varepsilon_{t-1})2 + N\varepsilon_{t-2}]2 + N\varepsilon_{t-3} \} 2 + \dots + N\varepsilon_{0} = N(2^{t}\varepsilon_{t} + 2^{t-1}\varepsilon_{t-1} + \dots + 2\varepsilon_{1} + \varepsilon_{0}) = NM.$$

Здесь, в отличие от предыдущего способа, серия вспомогательных карт регулирует передачу (или отсутствие таковой) $\sigma_2 \to \sigma_1$, в то время как ход $(\sigma_1)_1$ происходит обязательно после продвижения через блок \mathcal{B}_2 каждой карты массива μ . Естественно, что в этом случае в контрольном счетчике нет необходимости.

Характер описанного множительного процесса позволяет одновременно вести умножения на различные множители посредством следующего цикла: $r_{1, m} - \sigma_2 \rightarrow \sigma_1$ (через селектор S_1), $\sigma_4 \rightarrow \sigma_3$ (через селектор S_2), . . . , $\sigma_{2p} \rightarrow \sigma_{2p-1}$ (через селектор S_p), . . . , $\sigma_{2k} \rightarrow \sigma_{2k-1}$ (через

селектор S_k) $(m=t, t-1, \ldots, 1, 0); r_{2,m}-(\sigma_1)_1, (\sigma_3)_1, \ldots, (\sigma_{2n-1})_1, \ldots$ $\ldots, (\sigma_{2k-1})_1 \ (m=t, t-1, \ldots, 2, 1).$

Селекторы $S_1, S_2, \ldots, S_r, \ldots, S_k$ управляются соответственно по

колонкам $\lambda_1, \lambda_2, \ldots, \lambda_p, \ldots, \lambda_k$.

Пусть на счетчике $\sigma_{2\rho}$ ($ho=1,\,2,\ldots,k$) установлено число $N_{
ho}$ и пусть $M_{\rho} = 2^{t} \varepsilon_{t, \rho} + 2^{t-1} \varepsilon_{t-1, \rho} + \ldots + 2 \varepsilon_{1, \rho} + \varepsilon_{0, \rho}$. Пусть, далее, на карте π_{σ} массива μ в колонке λ_{ρ} отображено значение $\varepsilon_{\sigma,\rho}$. Тогда в результате прохождения карт массива μ указанный цикл приводит к установке в счетчике $\sigma_{2\mathfrak{p}-1}$ числа $N_{\mathfrak{p}}M_{\mathfrak{p}}$. Таким образом, здесь возможно одновременно проводить к умножений, если количество счетчиков табулятора не менее 2k.

Наконец, мы приведем способ, который позволяет проводить каждое умножение в одном счетчике вместо двух. Счетчик о, заменяется в этом случае сектором g_1 карт массива μ : наносим на все карты массива µ в сектор g₁ величину N. Проводим цикл (с управлением селектором S по колонке λ): $r_{1,m} - g_1 \rightarrow C$, $(X) \rightarrow \sigma_1$ (m = t, t - 1, ..., 1, 0);

 $r_{2, m} - (\sigma_1)_1 \ (m = t, t - 1, ..., 2, 1).$

Легко видеть, что в результате прохождения карт массива и этот цикл приводит к установке на счетчике от числа NM. Совершенно очевидно, что одновременные вычисления при этом способе можно

вести в удвоенном масштабе. Мы теперь перейдем к рассмотрению циклов для решения некоторых математических задач, причем в эти циклы составной частью войдут описанные нами множительные циклы. Для удобства последующего изложения целесообразно выделить множительный цикл как самостоятельный элемент более сложного цикла. Мы будем обозначать множительный цикл, проводящийся в счетчиках σ_{\wp} , σ_{γ} (результат образуется в $\sigma_{_{
ho}}$) с параметрами $t_{1},\ t_{2},\ldots,t_{m}$, через $P_{_{
ho\chi}}(t_{1}^{
ho\chi},\ t_{2}^{
ho\chi},\ldots$ \ldots , $t_m^{
ho\chi}$). В случае применения второго рассмотренного способа мы параметрами множительного цикла будем считать цифры $\varepsilon_t, \varepsilon_{t-1}, \ldots, \varepsilon_0$ двоичного разложения множителя.

Пусть нам задано линейное разностное уравнение п-го порядка

$$f(x+n)\!=\!u_1(x)f(x+n-1)+u_2(x)f(x+n-2)+\ldots+u_n(x)f(x)(1)$$
 с начальными условиями $f(x_0)\!=\!a_0, f(x_0\!+\!1)\!=\!a_1,\ldots,f(x_0\!+\!n\!-\!1)\!=$ $=\!a_{n-1}.$ Построим следующий $(n+1)\!$ -связный цикл z_m (участвуют счетчики $\sigma_0,\sigma_1,\ldots,\sigma_n$): $r_{1,m}\!-\!\sigma_n\!=\!\sigma_n;\;r_{2,m}\!-\!\sigma_{n-1}\!\Rightarrow\!\sigma_n;\ldots;\;r_{2n-1,m}\!-\!\sigma_1\!\equiv\!\sigma_1;\;r_{2n,m}\!-\!\sigma_0\!\Rightarrow\!\sigma_1$ *; $r_{2n+1,m}\!-\!P_{01}(t_{1,m}^{01},\;t_{2,m}^{01},\ldots,\;t_{\xi,m}^{01});\ldots;\;r_{3n,m}\!-\!P_{0n}(t_{1,m}^{0n},\;t_{2,m}^{0n},\ldots,\;t_{\xi,m}^{0n}).$

Конструируем параметры множительных процессов цикла гт следующим образом: 1) $t_{j,m}^{0n}$ $(j=1,2,\ldots,\xi)$ из двоичного разложения $u_n(x_m)=u_n(x_0+m+n-1);$ 2) $t_{j,m}^{0n-1}$ из двоичного разложения $u_{n-1}(x_m):2^{t_n}$ $(t_n$ — двоичная разрядность $u_n(x_m)$) и т. д. n) $t_{j,m}^{01}$ из двоичного разложения $u_1(x_m):2^{t_n+t_{n-1}+\cdots+t_2}$ $(t_2$ — двоичная разрядность $u_2(x_m)$). В результате подобного конструирования параметров цикла мы получим по окончании цикла z_m в счетчике σ_0 число

$$u_1(x_m) a_0^{m-1} + u_2(x_m) a_1^{m-1} + \ldots + u_n(x_m) a_{n-1}^{m-1}.$$

^{*} В случае применения способа без контрольного счетчика необходимо ввести еще ход $r_{2n, m} - \sigma_0 \rightarrow \sigma_0$.

Пусть теперь положение на счетчиках к началу цикла z_m было:

$$a_n^{m-1} = f(x_0 + m - 1), \quad a_{n-1}^{m-1} = f(x_0 + m - 1 + 1), \dots$$

..., $a_0^{m-1} = f(x_0 + m - 1 + n).$

Тогда после первых 2n шагов цикла z_m мы получаем в счетчиках $\sigma_n, \ldots, \sigma_1$ соответственно показания:

$$a_n^m = a_{n-1}^{m-1} = f(x_0 + m), \quad a_{n-1}^m = a_{n-2}^{m-1} = f(x_0 + m + 1), \dots$$

 $\dots, a_1^m = f(x_0 + m + n - 1).$

В результате же остальных шагов цикла мы получаем в счетчике σ_0 установленным число

$$a_0^m = u_1(x_0 + m) f(x_0 + m + n - 1) + \dots \dots + u_n(x_0 + m) f(x_0 + m) = f(x_0 + m + n).$$

Итак, в результате цикла z_m мы получим в показаниях счетчиков индекс, увеличенным на единицу, и в σ_0 значение функции, удовлетворяющее уравнению (1).

Введя по окончании цикла печатающий ход с проявлением показаний счетчика σ_0 , а также номера цикла, мы получим таблицу зна-

чений искомой функции, удовлетворяющей уравнению (1).

Описанный цикл z_m требует предварительной усложненной подготовки двоичных разложений значений коэффициентов, поскольку в определении параметров умножения на $u_i(x)$ учитываются значения всех предыдущих коэффициентов. Поэтому целесообразно (в особенности, если коэффициенты уравнения (1) не постоянны) избавиться от этой усложненной подготовки, что возможно за счет некоторых добавлений к z_m .

Нами реализованы циклы для некоторых важных простейших уравнений. Так, уравнение f(x+1) = (x+1) f(x) при f(0) = 1 приводит к функции (x+1)!, и мы получаем на табулаграмме таблицу факториалов. Для этого мы разлагаем в двоичную систему последовательные целые числа от 1 до H и, проводя множительный элемент цикла по параметрам этого двоичного разложения, получаем факто-

риалы всех целых чисел от 1 до Н.

Если мы аналогичный цикл проведем с параметрами, определяющимися двоичными разложениями постоянного числа y, т. е. будем решать уравнение f(x+1)=yf(x), то при f(0)=1 мы будем получать последовательно значения y, y^2, \ldots, y^m , а при f(0)=c соответственно cy, cy^2, \ldots, cy^m . Далее, если мы тот же цикл будем проводить по параметрам двоичного разложения величин $y/1, y/2, \ldots, y/n$, то при f(0)=c мы будем получать величины $c, cy/1!, cy^2/2!, \ldots, cy^n/n!$

Удлиним теперь этот цикл тем, что введем в начале каждого цикла передачу от карты в счетчики σ_0 и σ_1 числа d_1, d_2, \ldots, d_n .

Тогда после цикла z_n мы получим в счетчике σ_i сумму

$$\frac{d_1 y^n}{n!} + \frac{1! d_2 y^{n-1}}{n!} + \frac{2! d_3 y^{n-2}}{n!} + \ldots + \frac{s! d_{s+1} y^{n-s}}{n!} + \ldots + \frac{(n-1)! d_n y}{n!}.$$

Добавляя по окончании цикла z_n в σ_1 число $d_0 = \varphi(0)$ и определяя числа d_s по формуле $d_s = \frac{n!}{(s-1)! \, (n-s+1)!} \, \varphi^{(n-s+1)}(0)$, мы получаем значение $\varphi(y)$ как сумму n членов ряда Маклорена для функции $\varphi(x)$. Поступило 23 XII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА