ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

И. И. КИТАЙГОРОДСКИЙ и И. Д. ТЫКАЧИНСКИЙ

ПРОЦЕСС СТЕКЛООБРАЗОВАНИЯ ПРИ НАГРЕВАНИИ ЧЕТЫРЕХКОМПОНЕНТНОЙ МАГНЕЗИАЛЬНОЙ ШИХТЫ

(Представлено академиком И. В. Гребенщиковым 25 XII 1947)

Для создания правильных, научно обоснованных режимов необходимо знание физических и химических процессов, протекающих в шихте в течение всего периода варки стекла.

Целью настоящей работы явилось исследование процессов, про текающих при нагревании четырехкомпонентной магнезиальной шихты, близкой по составу к шихте стекла Фурко. Выявление этих условий позволит непосредственно перейти к изучению наиболее распространенной пятикомпонентной алюмо-магнезиальной шихты.

Состав шихты и подготовка материалов, применявшихся при исследовании. Типовой алюмо-магнезиальный состав стекла, рекомендованный И. И. Китайгородским для выработки листового стекла по методу Фурко

$SiO_2 - 71,5\%$	CaO — 8,5%
$Al_2O_3 - 1,5\%$	MgO — 3,5%
$Na_{2}O - 15,0\%$	100%

был положен в основу данного исследования. Нами был исключен глинозем, но сохранены соотношения между отдельными компонентами, которые имеются в вышеприведенном составе. Полученный после пересчета на четыре компонента состав

 $\begin{array}{rl} {\rm SiO_2-72,59\%} & {\rm CaO-8,63\%} \\ {\rm Na_2O-15,23\%} & {\rm MgO} \\ \underline{-3,55\%} \\ 100\% \end{array}$

количественно весьма мало отличался от основного. В то же время сохранение соотношений, имевшихся между окислами в пятикомпонентной шихте, создаст возможность в дальнейшем применить полученные результаты для изучения пятикомпонентной шихты.

В качестве исходных материалов для составления шихты были применены: химически чистый углекислый натрий (Гослаборснабжения) и "чистые для анализа" кальбаумовские углекислый магний и углекислый кальций. Кремнезем вводился в шихту в виде измельченного горного хрусталя, не имевшего никаких примесей, кроме 0,03% Fe₂O₃. Средний диаметр частиц — 0,08 мм. Материалы непосредственно перед шихтованием высушивались до постоянного веса при температуре 150°.

Методы исследования. Анализ методов исследования реакций силикатообразования показывает, что ни один из существующих методов, применяемый самостоятельно, не дает возможности полностью изучить явления, происходящие при нагревании стекольной шихты. Поэтому проведение данного исследования было решено осуще-

e.

ствить одновременно тремя дополняющими друг друга методами, а именно: а) методом термического анализа с применением дифференциального термоэлемента; б) методом непрерывного определения потерь в весе; в) микроскопическим анализом продуктов реакций, получаемых на отдельных стадиях процесса.

Для сопоставления результатов было необходимо соблюдение условия идентичности при проведении экспериментов всеми тремя и особенно первыми двумя методами. Это условие соблюдалось путем применения для всех опытов: а) равной навески 2,5 г; б) равной скорости нагревания 8°С/мин.; в) точного замера температуры в слое шихты.

Рис. 1. Кривые нагревания смеси MgCO₃—CaCO₃ — Na₂CO₃ — SiO₂

Рис. 2. График изменения потерь в весе: *I*-MgCO₃-CaCO₃-Na₂CO₃-SiO₂; *2*-MgCO₃-Na₂CO₃-SiO₂; *3*-CaCO₃-Na₂CO₃-SiO₂

Процесс стеклообразования при нагревании четырехкомпонентной шихты

Процесс плавления четырехкомпонентной шихты весьма сложен и многообразен благодаря наличию большого числа реакций взаимодействия основных компонентов друг с другом с образованием ряда промежуточных продуктов, также вступающих в реакцию.

В настоящей статье не представляется возможным подробное рассмотрение термограмм и кривых потерь в весе всех 14 изученных смесей, поэтому мы вынуждены остановиться на результирующих кривых по четырехкомпонентной шихте и объясняющих ее трехкомпонентных шихтах.

Кривые нагревания (рис. 1) и кривая потерь в весе (рис. 2, кривая *I*) иллюстрируют ход процесса при нагревании четырехкомпонентной шихты принятого нами состава.

Термические эффекты на дифференциальной кривой данной шихты в значительной мере повторяют эффекты, отмеченные при нагревании двух шихг: $MgCO_3 - Na_2CO_3 - SiO_2$ (рис. 3) и $CaCO_3 - Na_2CO_3 - SiO_2$ (рис. 4). На графике изменения потерь в весе также можно отметить явления, присущие каждой из указанных смесей и обеим им совместно. Замедление нагревания и удаления из шихты CO_2 начинается при 300° и усиливается при 380° в связи с начавшимися реакциями диссоциации карбоната магния и взаимодействия $MgNa_2(CO_3)_2$ и Na_2CO_3 с кремнекислотой (последнее установлено по двухкомпонентным смесям).

Замедление нагревания становится более резким при температуре около 600° и дает незначительный максимум при 620°. Эти эффекты, как показывают и кривые потерь в весе (кривая 2 рис. 2. потери в весе при нагревании $MgCO_3 + Na_2CO_3 + SiO_2)$, относятся к максимуму диссоциации карбоната магния и энергично идущей реакции $MgNa_2(CO_3)_2 + SiO_2$.

В интервале 600—900° замедление нагревания продолжается. Анализ кривых нагревания и графика потерь в весе предыдущих смесей показывает, что замедление вызывается главным образом реакциями

образования силикатов кальция и натрия: $CaNa_2(CO_3)_2 +$ $+ 2SiO_2 \Rightarrow CaSiO_3 + Na_2SiO_3 +$ $+ 2CO_2$; $CaCO_3 + SiO_2 \Rightarrow$ $\Rightarrow CaSiO_3 + CO_2$; $Na_2CO_3 +$ $+ SiO_2 \Rightarrow Na_2SiO_3 + CO_2$.

Эндотермический эффект при температурах с максимумом около 860° отвечает плавлению ряда эвтектик силикатов кальция, магния ДВОЙНОЙ и натрия и соли CaNa₂ (CO₃)₂ с Na₂CO₃. Следует отметить, что характерный пик при $t=855^\circ$, соответствующей плавлению Na₂CO₂, на кривой четырехкомпонентной шихты размыт; на термограм-

MgCO₃-Na₂CO₃-SiO₂

мах трехкомпонентных шихт он имеется. Это говорит о том, что количество непрореагировавшего карбоната при данной температуре в четырехкомпонентной шихте очень невелико, и эвтектики, быстро следующие друг за другом, имеют место вблизи этой температуры.

Рис. 4. Кривая нагревания CaCO₃— Na₂CO₃—SiO₂

Последний эндотермиче-СКИЙ эффект на дифференциальной кривой проявляется при 915°, что соответствует диссоциации остатков непрореагировавшего карбоната кальция. Это же подтверждается ростом потерь в весе (кривая 1), приближающимся потерям К ДЛЯ $CaCO_3 -$ — Na₂CO₃ — SiO₂ (кривая 3). Эндотермический эффект, имевший место В смеси $CaCO_3 - Na_2CO_3 - SiO_2$ при 960°, на данной кривой отсутствует. Это указывает на то, что ДВ**О**ЙНОЙ карбонат СаNa₂(CO₃)₂ успел прореагировать и разложиться до 920°.

Подтверждением этому служит отсутствие потери в весе при вышеуказанной температуре.

Начиная с 980°, нагревание ускоряется, и на дифференциальной кривой (рис. 1) появляется экзотермический эффект с расплывчатым максимумом в интервале температур $1050 - 1150^\circ$. Этот эффект является отражением экзотермических реакций MgO + SiO₂ \rightarrow MgSiO₃ и CaO + SiO₂ \rightarrow CaSiO₃, протекающих особенно энергично в указанном интервале температур (рис. 1, 3, 4).

Для уточнения отдельных деталей процесса было произведен петрографический анализ шлифов, приготовленных из шихты, нагретой до различных температур в интервале 240—1200°. Результаты петро-8* графического исследования шлифов четырехкомпонентной шихты, проведенного Е. К. Виноградовой, подтвердили:

1. Образование двойных солей MgNa₂ (CO₃)₂ и CaNa₂ (CO₃)₂ при температурах ниже 400°, причем MgNa₂ (CO₃)₂ обнаружился при 240°.

2. Образование при 480° силикатов магния.

3. Образование при 600° и выше силикатов кальция и взаимодействие их с силикатами магния (образование мельчайших кристаллов группы пироксенов пижонита).

4. Появление жидкой фазы при 800°, т. е. ниже температуры плавления карбоната натрия.

5. Плавление до 1200° всех компонентов шихты, за исключением отдельных корродированных зерен кварца, не успевших раствориться в расплаве.

Обобщая данные, полученные при исследовании всех предыдущих одно-, двух- и трехкомпонентных смесей, и результаты изучения данной шихты методами термического анализа, динамического определения потерь в весе и микроскопического анализа, приходим к следующему выводу о ходе реакций в процессе стеклообразования четырехкомпонентной шихты.

1.	Образование MgNa ₂ (CO ₂),	< 200°
2.	Начало диссоциании МоСО.	< 000 .
3.	Начало образования СаNa (СО)	300
Δ	Hauano pastowowie CoCO	$< 400^{\circ}$.
5	Province $M = N_{-} (200)$	420°.
0.	$\frac{\text{Feaklus}}{+200} \text{ MgNa}_2(\text{CO}_3)_2 + 2\text{SiO}_2 \rightarrow \text{MgSiO}_3 + \text{Na}_2\text{SiO}_3 + \frac{1}{2}\text{Na}_2\text{SiO}_3 + \frac{1}{2}\text{Na}_2\text{Na}_2\text{Na}_2\text{Na}_2\text{Na}_2\text{SiO}_3 + \frac{1}{2}\text{Na}_2\text{Na}$	
6	Parrung MacO I Cio N Cio I -	340620°.
7	$1 \text{ Cakling MgCO}_3 + \text{SIO}_2 \rightarrow \text{MgSIO}_3 + \text{CO}_2$	450-700°.
1.	$Peaking CaNa_2(CO_3)_2 + 2SiO_2 \rightarrow CaSiO_3 + Na_2SiO_3 + $	
0	+2002	585—900°.
ō.	Энергичное течение реакции $Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_3 + CO_3 + SiO_2 \rightarrow Na_2SiO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_3 + SiO_2 \rightarrow Na_2SiO_3 + SiO_2 \rightarrow Na_2SiO_3 + SiO_3 + SiO_2 \rightarrow Na_2SiO_3 + SiO_2 \rightarrow Na_2SiO_2 + SiO_2 +$	
0		700—900°.
9. 10	$\operatorname{Peaklug}_{M} \operatorname{CaCO}_{3} + \operatorname{SiO}_{2} \rightarrow \operatorname{CaSiO}_{3} + \operatorname{CO}_{2} \dots \dots$	600—920°.
10.	Максимум скорости разложения MgCO ₃	620°
11.	Появление жидкой фазы за счет эвтектик силикатов маг-	040 1
	ния и натрия с кремнеземом и двойных углекислых солей	
10	Manual Manua	780—880°.
12.	максимум скорости разложения CaCO ₃	915°
13.	Энергичный ход реакций MgO + SiO ₂ → MgSiO ₃	980—1150°
14.	Энергичный ход реакций CaO + SiO, > CaSiO,	1010-11500
15.	Реакция CaSiO ₃ + MgSiO ₃ → CaSiO ₂ ·MgSiO.	600 12000
16.	Растворение зерен кварца и силикатов кальния и мат	000-1200
	в расплаве	1150 19000
		1100-1200

Как видно из приведенной схемы процесса, в четырехкомпонентной магнезиальной шихте реакции диссоциации карбонатов силикатообразования и плавления начинаются раньше, идут более энергично и заканчиваются при более низких температурах, чем в трехкомпонентной натриево-кальциевой шихте.

Химико-технологический институт им. Д. И. Менделеева

Поступило 23 XII 1947