БИОХИМИЯ

Г. С. ИЛЬИН

СИНТЕЗ АЛКАЛОИДОВ В ИЗОЛИРОВАННЫХ ПРИВОЯХ ТАБАКА

(Представлено академиком А. И. Опариным 2 1 1948)

Каждый орган в жизни растений выполняет определенную функцию, но, помимо своего прямого назначения, в некоторых случаях он может проявлять и специфические свойства, закрепленные в нем эволюционным процессом. Например, табак, привитый на томате, развивается вполне нормально и по внешнему виду в нем не замечается особых различий от контрольных растений, т. е. корневая система растения другого вида вполне обеспечивает потребность табака в воде и питательных веществах для завершения полного цикла его развития. Однако это растение в данном случае не содержит никотина, типичного алкалоида табака (1). Значит, корни одного вида растения не могут выполнять всех функций другого, хотя и близкого к нему вида без нарушения свойственных ему биохимических процессов. Перед нами стал вопрос: как будет реагировать растение в отношении синтеза алкалоидов, будучи снова укоренено?

Для решения этого вопроса летом 1945-1946 гг. были взяты растения: табак, амфидиплоид $Nicotiana\ rustica \times N$. glauca и $Nicotiana\ glutinosa$ и сделаны прививки их на томат и обратно. После того

Таблица] Изменение содержания никотина в привитых растениях

Привитые растения		Дата прививки и взятия гробы	Никотин в %
Томат на табаке		15 VII—7 VIII 15 VII—4 IX 15 VII—4 IX 4 IX 24 VII—9 IX 22 VI—9 IX 22 VI—9 IX 23 VII—9 IX 29 VI	4,0 0,08 2,15 3,85 0,04 4,30 0,38 0 1,18 0,95 2,4 1,52
ния от подвоя; дал свои корни 17 IX Корни табака, подвой Табак на томате № 37 Махорка на томате № 6, 9 Томат на табаке № 45 Табак на томате № 28. образовал корни		29 X1 29 X1	0,35 0,56 0 0 1,42 0,08

как черенки прижились и растения стали нормально расти и развиваться, с них были взяты снова черенки— верхушки уже привитых растений.

Черенки предварительно выдерживались на воде в течение 15—20 дней и после того, как они образовали корни, растения в дальнейшем выращивались до конца вегетационного периода по методу водных или почвенных культур на питательной смеси Кнопа. Развитие их шло вполне нормально, после чего они были убраны и анализированы на содержание в них алкалоидов по методу Pful или A. A. Шлука и A. C. Бороздиной (2,3). Полученные данные представлены в табл. 1 и 2.

Таблица 2 Алкалонды в изолированных растениях-привоях

растения	Дата изолирования прививки и взятия пробы	Никотин в %
Махорка с томата № 7, водные культуры	30 VII—18 IX 9 VIII—18 IX 7 VIII—18 IX 25 VIII—18 IX 30 VII—18 IX 29 XI 29 XI	3,88 0,29 0,05 0,73 0,21 0,60 0,15 0,33 0,55 0,65 0
		Сумма алкалондов
Амфидиплоид с томата № 30, почвенные культуры		0,65 0,76 0,11 0,13 0,29 0,11

I опыт. Растения Nicotiana tabacum и Nicotiana rustica были привиты на томат и обратно. Через 24 дня после того, как привитые растения прижились и начали расти, были взяты пробы для анализа. Листья привитых растений томата по краям имели небольшой участок некротической ткани, шириной 1-2 мм; при дальнейшем развитии листьев на последующих ярусах этого не наблюдалось. Эти "ожоги", повидимому, обусловливаются накоплением в тканях листа никотина; после того как начинают образовываться новые листья у привитого на подвое томата, они развиваются вполне нормально. К этому времени содержание никотина в листьях привитого растения томата достигает $4^{0}/_{0}$ и это количество удерживается почти в течение всего периода дальнейшего развития растения.

Противоположная этому картина наблюдается в привитых растениях табака. Количество никотина быстро падает; вероятно, оставшееся количество, привнесенное вместе с черенком, обусловливается содержанием никотина в количестве 0,08%. Растения образуют новые листья, пышно развиваются и, как показывают взятые на анализ пробы,

в них совершенно нет никотина.

Затем с этих привитых растений были взяты черенки и на 20-й день укоренившиеся черенки уже выращивались в водных или почвенных культурах.

Развитие и рост растений шли нормально.

Только в первых пробах мы обнаружили никотин в листьях томата в количестве $0.05-0.2^{\circ}/_{0}$, т. е. за метно резкое снижение никотина, а в конце вегетационного периода мы никотина не нашли, т. е. растение

возвращается к своему нормальному обмену.

Противоположная этому картина наблюдается в табаке. В первых же пробах мы обнаружили в листьях $0,29-0,73^{\circ}/_{0}$ никотина; количество его во всей надземной массе растения к концу вегетационного периода составляет $0,55-0,65.^{\circ}/_{0}$ Здесь корлевая система табака, стебель и листья в цепи последовательных биохимических реакций создают недостающее звено в обмене веществ, типичном для данного вида растений, в результате чего в нем снова появляется никотин.

И опыт. Растения амфидиплоида привиты на томат и обратно. В привитых растениях томата имеются алкалоиды: никотин и анабазин, так как само растение-амфидиплоид содержит эти алкалоиды в своих корнях, чем и определяется их содержание в томате (4). В результате этого процесса растения накапливают $0.95^{\circ}/_{\circ}$ никотина уже через 1,5 месяца. Привитые растения были срезаны с подвоя через месяц и затем выращивались, как обычно в условиях данного опыта.

Содержание алкалоидов с развитием растений томата идет на убыль и к концу вегетационного периода снижается до 0,11—0,29%, т. е. биохимический процесс в укорененных привоях томата протекает, как

обычно в нормальных растениях этого вида.

В привитых растениях амфидаплоида на томате мы имеем лишь один алкалоид — анабазин, образование которого в растениях, его содержащих, не зависит от собственной корневой системы в противоположность никотину; в отличие от контрольных растений нет и норникотина, так как нет донатора-никотина, из которого он образуется уже

в листьях в результате реакции деметилирования.

Черенки амфидиплоида были взяты через 1,5 месяца; после укоренения они были перенесены в вазоны с почвой. Развитие шло вполне нормально. Как показывают данные анализа, укорененные привои содержат $0.65^{\circ}/_{o}$ алкалоидов (норникотин и анабазин), т. е. в них возобновился биохи мический процесс, свойственный данному растению, и собственная корневая система в данном случае исправила то уклонение от нормы, которое временно имело место при нахождении привоя на чужом корне томата.

III опыт. Nicotiana glutinosa была привита на томат и обратно. Привитые растения N. glutinosa не содержат норникотина. Источником для его образования является никотин, синтез которого в свою

очередь связан с наличием собственной корневой системы.

Привитые растения Nicotiana glutinosa, срезанные с подвоя через месяц и укорененные на 15-й день после снятия их с подвоя, высажены в почву, где и протекало их вполне нормальное развитие до конца вегетационного периода. К это лу времени растения вполне восстановили присущий им обмен, обычный для данного вида растения, с

образованием норникотина.

Растения то мата, привитые на Nicotiana glutinosa, были взяты для анализа на 50-й день, и в них мы нашли 1,18%, никотина вместо ожидаемого норникотина. Значит, корневая система этого растения нормально вырабатывает никотин; норникотин же, содержащийся в листьях данного растения, появляется вследствие вторичных реакций, в результате которых идет деметилирование никотина с образованием норникотина — алкалоида, являющегося уже вторичным основанием. Специфическая ферментная система N. glutinosa отсутствует в томате,

и это обстоятельство привело к появлению в данном случае никотина

в листьях привитого растения томата.

Отдельные прививки были срезаны с подвоя через 33 дня, укоренены и в дальнейшем содержались в условиях для водных культур на питательной смеси Кнопа. Содержание алкалондов в них резко снизилось и к концу опыта растения имели только 0,11—0,13% никотина вещества, чуждого им в нормальных условиях обмена.

Образование корней привоем без отделения от подвоя резко изменяет направление синтетических процессов в образовании алкалоидов. Так, в опыте 28 прививки табака на томате мы наблюдаем процесс накопления никотина в листьях в количестве 0,08%, в листьях же привитого томата на табаке № 36 мы имеем значительное уменьшение никотина — до 0,35°/₀.

Следовательно, собственная корневая система привитого на чужом корне растения резко меняет направление биохимического процесса в

сторону, присущую растению данного вида.

Какова судьба алкалондов в привитых растениях томата? Опыты по инфильтрации никотина в листья томата показывают, что в них имеет место незначительный распад введенного никотина. Возможно, что растение освобождается от него вместе с корневыми выделениями, которые обычно появляются в субстрате.

Что же касается привитых растений табака, то после укоренения они восстановили свои алкалоиды и собственная корневая система сыграла решающую роль в направлении нормального для них биохи-

мического процесса.

Однако степень накопления алкалоидов заметно снижена по сравнению с растениями в начале вегетации, так как условия выращивания растений в осенний период в оранжерее резко отличались от весенних и напряженность синтетических процессов была ослаблена. На основании полученных нами экспериментальных данных мы с несомненностью констатируем качественные изменения в химическом составе растений после их укоренения, выражающиеся в накоплении свойственных данному виду алкалондов.

Известная нам группа растений в процессе эволюции приобрела характерную особенность — синтезировать очень сложные органические соединения, выяснение роли которых в обмене веществ является

очередной задачей нашего исследования.

Поступило 31 XII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Шмук, А. И. Смирнов и Г. С. Ильин, ДАН, 32, 365 (1941) ² А. А. Шмук, Химия табака и махорки, М., 1938. ³ А. А. Шмук и А. С. Бороздина, ЖПХ, 13, 777 (1940).