Доклады Академии Наук СССР 1948. Том LIX, № 5

ЭНДОКРИНОЛОГИЯ

М. С. МИЦКЕВИЧ

АКТИВНОСТЬ ГИПОФИЗАРНО-ТИРЕОИДНОГО КОМПЛЕКСА В ЭМБРИОГЕНЕЗЕ МЛЕКОПИТАЮЩИХ

(Представлено академиком И. И. Шмальгаузеном 16 XII 1947)

Исследование эмбриональных эндокринных корреляций у высших позвоночных является одной из весьма существенных задач современной эндокринологии (1). Однако особенности зародышевого развития этих групп животных крайне затрудняют выяснение роли гормональ-

ных факторов в период эмбрионального развития.

Тем больший интерес представляет всякая возможность нового подхода, открывающего перспективы исследования эндокринных корреляций в эмбриогенезе млекопитающих. Подобную возможность дает сделанное в последние годы открытие химических ингибиторов функции щитовидной железы, испытанных на многих группах животных в постнатальный период их развития (2-5). При помощи тиомочевины, ее производных и некоторых других веществ вызывается почти полная блокада функции щитовидной железы без каких-либо существенных побочных повреждений. При этом в качестве вторичной реакции получается эффект развития зоба. В сообщении (6) я уже отмечал, что с помощью метилтиоурацила удалось получить прямые доказательства функции гипофизарно-тиреоидного комплекса у куриных эмбрионов. Настоящее исследование посвящено изучению активности этого комплекса в период эмбрионального развития млекопитающих.

Под опыт были взяты самки кроликов и белых крыс. Для подавления функции щитовидной железы употреблялся метилтиоурацил *: 200 мг на кролика и 10 мг на крысу в день. Индикатором роста эмбрионов

Таблица 1 Средний вес тела и щитовидных желез кроличьих эмбрионов

Возраст эмбрионов в днях	Контроль		Опыт			Вес щитовидных желез				
		-	Число эмбрионов	Вес тела в г	в % конт- ролю	Контроль		Опыт		
	Число эмбрионов	Вес тела в				абс. в мг	относит. к весу тела в º/ю	абс. в мг	относит. к весу тела в ‰	в °/о к контролю
18 20 22 24 27 Нөворожд.	5 7 9 6 15 14	1,08 3,29 6,85 13,11 29,3 55,0	10 5 5 4 14* 11**	1,02 3,34 8,9 11,0 25,66 44,1	94,4 101,5 129,9 83,9 87,6 80,2	1,10 3,16 5,04 7,46 7,87	0,334 0,461 0,384 0,255 0,143	1,2 4,67 7,43 14,87 27,54	0,859 0,524 0,675 0,579 0,624	107,5 113,7 175,8 227,0 436,4

^{*} Препарат был любезно предоставлен директором Всесоюзного института экспериментальной эндокринологии проф. Н. А. Шерешевским, которому автор выражает свою признательность.

** В эту группу вошла часть эмбрионов в возрасте 28 дней.

служило изменение веса тела. Материал фиксировался ценкер-формолом, реже буэном; срезы окрашивались по Маллори — Гейденгайну.

Результаты опытов с воздействием метилтиоурацила. Кролики. Есего под опытом было 182 эмбриона. Средние цифровые данные по весу тела и по весу щитовидной железы для каждой возрастной группы приведены в табл. 1.

Из сопоставления данных подопытной и контрольной серий видно, что до 22-дневного возраста вес тела эмбрионов в обеих сериях держится почти на одном уровне. Далее же наблюдается заметное отставание роста подопытных эбрионов. В отношении щитовидной железы прежде

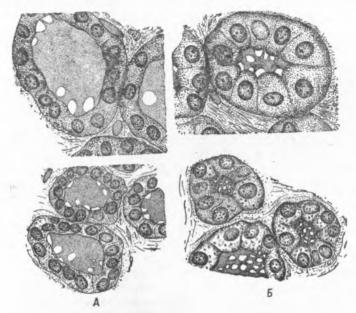


Рис. 1. ЦІнтовидные железы: вверху — беременных крольчих, внизу—27-дневных эмбрионов кроликов. A — нормальные, B — под воздействием метилтиоурацила. \times 900

всего следует отметить, что в норме у разных возрастных групп имеются значительные различия ее относительного веса: от 0,461% у 22-дневных эмбрионов до 0,143% у новорожденных. Под влиянием метилтиоурацила у всех эмбрионов подопытной серии наблюдается развитие характерного эффекта зоба в виде резкой гипертрофии эмбриональной щитовидной железы. Уже у 20-дневных эмбрионов можно отметить превышение относительного веса железы сравнительно с контролем на 7,5%. Далее эффект прогрессивно нарастает, выражаясь у 24-дневных в превышении контроля на 75,8%, а у новорожденных даже на 336,4%. Параллельно с гипертрофией железы наблюдаются и другие характерные для указанного эффекта признаки: гиперемия, значительная гиперплазия щитовидной железы и другие показатели гиперфункции (рис. 1). Эти изменения слабо выявляются на 22-й день и резко выражены на 24-й день внутриутробной жизни. На этой стадии высота клеток фолликулярного эпителия превышает контроль в два раза (1,6 вместо 0,8 µ), просвет фолликулов заполнен сильно вакуолизированным коллоидом, либо совсем исчезает.

Крысы. Опыты, аналогичные описанным выше, были проведены на 230 крысиных эмбрионах с 14-дневного возраста и кончая новорожденными. В отличие от других млекопитающих, щитовидная железа крыс нормально начинает дифференцироваться, приобретая дефинитивную фолликулярную структуру в самом конце эмбрионального периода 1034

с 18-го дня. Согласно недавно полученным мною данным (7), эмбриональный гипофиз крыс впервые обнаруживает тиреотропные свойства в этом же возрасте. Кроме того, опыты с воздействием метилтиоурацилом показали, что и характерные изменения в щитовидной железе могут быть отмечены у крысиных эмбрионов на 18—19-й день внутриутробной жизни. Судя по вышеприведенным данным, функция гипофизарно-тиреоидного комплекса устанавливается у крысиных зародышей незадолго до рождения, в силу этого и роль его в эмбриогенезе крыс, повидимому, гораздо более скромная, чем у кроликов. Ро всяком случае, при подавлении функции щитовидной железы крысиных эмбрионов не удалось обнаружить заметных изменений в развитии зародышей.

Приведенные данные о развитии у эмбрионов кроликов и крыс под влиянием метилтиоурацила характерного эффекта зоба допускают

возможность четырех толкований:

Рис. 2. Щитовидные железы: A — беременных крольчих, получавших метилтиоурацил + тиреоидин; B — их 24-дневные и B — 27-дневные эмбрионы. В фолликулах материнской железы (A) плотный оксифильный коллоид окружен бесцветными капельками свежеобразованного хромофобного коллоида. \times 900

б) что полученный эффект есть результат пониженной продукции тиреоидного гормона материнской щитовидной железой, и поскольку зародыш теперь получает меньше этого гормона, чем в норме, его гипофиз реагирует на это усиленным выделением тиреотропного гормона, вызывающего дальнейшие изменения;

в) что изменения в щитовидной железе эмбриона развиваются под воздействием тиреотропного гормона матери, в избытке продуцируемого материнским гипофизом после введения метилтиоурацила;

г) что указанный эффект развивается у зародыша под влиянием одновременного материнского и собственного тиреотропных гормонов.

Вторая возможность реальна при условии проходимости тиреоидного гормона матери через плаценту. Третья и четвертая предполагают проходимость через плаценту материнского тиреотропного гормона.

Результаты опытов с параллельным воздействием метилтиоурацила и тиреоидина. Для предотвращения возможности влияния тиреотропного гормона матери, если он на какой-либо стадии беременности способен проникать через плаценту, была осуществлена специальная серия опытов. Крольчихам со дня их покрытия к пище ежедневно добавлялось 200 мг метилтиоурацила и 100 мг сухого порошка тиреоидина. Вводимого тиреоидина было вполне достаточно для подавления продукции тиреотропного гормона мате-

Таблнца 2 Сравнение веса щитовидных желез эмбрионов кролика в разных сериях

			Вес щитовидных желез			
Серия	Возраст эмбрионов в днях	Число эмбрионов	абсол.	B % % % % % % % % % % % % % % % % % % %	в °/о к контролю	
а* б в	22	9 5 6		0,461 0,524 0,545	113,7 118,2	
а б в	24	6 4 6	5,04 7,43 9,68	0,384 0,675 0,650	 175,8 169,3	
а б в	Новорожд.	14 11 6	7,87 27,54 30,82	0,143 0,624 0,623	436,4 435,7	

ринским гипофизом, о чем свидетельствовала морфологическая картина гипофункции щитовидных желез у крольчих (рис. 2, A). Вместе с тем, обогащая организм последних тиреоидным гормоном, можно было проверить его проходимость через плаценту, поскольку в положительном случае развитие эффекта зоба у эмбрионов не имело бы места.

Как видно из табл. 2, относительный вес шитовидной железы в серии б, где вводился одын метилтиоурацил, не отличается от серии в, где одновременно с метилтиоурацилом вводился и тиреоидин. Следовательно, введение тиреоидина матери, получающей метилтио-

урацил, не предотвращает увеличения шитовидных желез у ее зародышей. Исследование микроскопической структуры щитовидных желез таких эмбрионов позволило дополнительно установить, что железы до 24-дневного возраста в сериях б и в имеют сходное строение, обнаруживая сильную гиперфункцию. Однако уже у 27-дневных эмбрионов серии в наблюдаются характерные признаки гипофункции щитовидной железы: фолликулы наполнены плотным оксифильным коллоидом без вакуолей, эпителий низкий, как в контрольной серии (рис. 2, Б и В). Эти данные позволяют предполагать, что до 24 дней беременности кролика тиреоидный препарат, вводимый в избытке матери, не проходит через плаценту к зародышу. Однако к 27-му дню беременности плацента становится проницаемой для тиреоидина.

Институт эволюционной морфологии им. А. Н. Северцова Академии Наук СССР

Поступило 16 XII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

А. Н. Студитский, Эндокринные корреляции зародышевого развития высших позвоночных, изд. АН СССР, 1947. ² С. G. Маскепzie and J. В. Маскепzie, Endocrinol., 32, 2, 185 (1943). ³ J. P. Mixner, E. P. Reineke and C. W. Тигпеr, ibid., 34, 3, 168 (1944). ⁴ Я. М. Кабак. и А. Е. Рабкина, Бюлл. эксп. биол. и мед., 20. 6, 61 (1945). ⁵ Я. М. Кабак, А. А. Беэр и А. Е. Рабкина, там же, 21, 1—2. 37 (1946). ⁶ М. С. Мицкевич, ДАН, 58, № 4 (1947). ⁷ М. С. Мицкевич, ДАН, 59, № 4 (1948).

^{*} а-контроль, б-метилтиоурацил, в-метилтиоурацил + тиреоидин.