ГЕНЕТИКА

Действительный член АН БССР А. Р. ЖЕБРАК и А. С. АФАНАСЬЕВА

СРАВНИТЕЛЬНАЯ ПЛОДОВИТОСТЬ ТЕ РАПЛОИДНОГО И ДИПЛОИДНОГО ПРОСА В УСЛОВИЯХ ПОЛЕВОЙ КУЛЬТУРЫ

Материалом для настоящего исследования послужили два образца тетраплоидного и два диплоидного проса, полученные нами с Уральской государственной селекционной станции от А. М. Дынникова. История происхождения присланного нам для исследования проса следующая. В 1939 г. А. М. Дынников при оценке зерна проса различных сортов из опыта конкурсного со тоиспытания обнаружил в зерне сорта "Виктория 13", размножавшегося на Уральской станции 3—4 года, три зерна, резко отличавшиеся по форме н величине как от зерна "Виктория 13", так и от всех других сортов, имеющихся на станции. Тщательно перебрав все семена сорта "Виктория" в количестве около 150 кг, ему удалось обнаружить и выделить еще 20 зерен. Таким образом из сорта "Виктория 13" в количестве 150 кг удалось выделить 23 зерна более крупного размера и удлиненной формы. Выделенные зерна были высеяны в 1940 г. и дали растения, которые резко отличались по морфологическим признакам от исходных сортов. С полученными формами А. М. Дынников начал селекционную работу на станции и в 1946 г. прислал нам часть семян для цитологического исследования, поскольку эту работу на станции провести было невозможно.

Цитологические исследования, проведенные на кафедре генетики и цитологии Тимирязевской сельскохозяйственной актдемии, показали, что крупнозерное и удлиненной формы просо содержит в соматических клетках 72 хромосомы, в то время как обычное просо из контроля содержит в соматических клетках 36 хромосом. Таким образом, обнаруженное и выделенное А. М. Дынниковым крупнозерное просо является естественным тетраплоидом.

Естественные тетраплоиды проса были выделены и описаны несколько раньше Д. Н. Аренковой (¹) из двух образцов Всесоюзного института растениеводства (№№ 2775 и 37). Наиболее вероятной причиной, обусловливающей возникновение тетраплоидов проса в природе, являются температурные воздействия на разные стадии и фазы

развития растений.

С целью дальнейшего изучения тетраплоидного проса в 1947 г. нами был произведен посев тетраплоидного и диплоидного проса. Зерно высевалось в чашки Петри, проростки пересаживались в ящики, а по достижении 4—5 см высоты растения высаживались в грунт на расстоянии 30 см между рядами и 6 см между растениями в рядках. Уже на ранних стадиях развития обнаруживались различия по морфологическим признакам между тетраплоидными растениями, причем более резкие имели место между сортом "Виктория 13" и

крупнозерным красным, выделенным из этого сорта. Сначала различие выражалось в более интенсивной окраске листьев и в опущении их. Позже различия сказались на размерах устьиц и, в особенности, на размере поверхности устьиц и размере пыльцевых зерен. Цифровые материалы по учету этих признаков приведены в табл. 1.

Таблица 1

№ образца	Название образца		Длина устьиц	В %	По- верх- ность устьиц	В %	Размер пыль- цевого зерна в и	B %
12	«Виктория 13»	Диплоидное	10,4	100	66,8	100	38,6	100
13	Крупнозерное красное	Тетраплоидное	13,4	128,8	110,1	164,8	47,0	121,7
14	Уральское белое	Диплоидное	10,0	100	65,4	100	39,6	100
15	Крупнозерное кремовое	Тетраплоидное	12,5	125,0	99,7	152,4	48,0	121,2

Как и следовало ожидать, у тетраплоидного проса размеры устьиц и пыльцевых зерен сильно превышали размеры последних у диплоид-

ных форм.

В период вегетации велись фенологические наблюдения. Необходимо отметить, что крупнозерное красное просо (тетраплоидное) несколько отставало в развитии; крупнозерное кремовое просо развивалось одновременно со своим контролем и было убрано не совсем созревшим, не созрел полностью также и контроль к нему, т. е. Уральское белое просо (табл. 2).

Таблица 2

T.	*		Число дней от посева до		
№ образца	Название образца		куще- нн я	выбра- сыва- ния ме- телки	созре- вания
12	«Виктория 13» /	Диплоидное	46	68	128
13	Крупнозериое красное	Тетраплоидное	46	78	134
14	Уральское белое	Диплоидное	46	71	> 138
15	Крупнозерное кремовое	Тетраплоидное	46	71	> 138

Убранные растения подвергались подробному морфологическому анализу. В результате анализа установлено, что у тетраплоидного проса главная метелка короче, чем у диплоидного, длина веточек первого порядка нижнего яруса также меньше, число колосков на главной метелке значительно меньше.

Средние данные, характеризующие тетраплоидное и диплоидное

просо, представлены в табл. 3.

Как у тетраплоидного, так и у диплоидного проса не все колоски дают семена, т. е. полной фертильности не наблюдается. Процент стерильных колосков у тетраплоидного проса очень сильно варьирует у отдельных растений: у крупнозерного красного он колеблется от 33,2 до $85,5^{\circ}/_{0}$, что составляет в среднем $58^{\circ}/_{0}$, у крупнозерного кремового процент стерильных колосков еще выше — он варьирует от 75,1 до $98,0^{\circ}/_{0}$, что составляет в среднем $84,6^{\circ}/_{0}$. Процент стерильных колосков у диплоидного проса был также велик, он достигал $47,9^{\circ}/_{0}$.

Наименование признаков	Диплоидное № 12	Тетраплондное № 13	Диплопдное № 14	Тетраплондное № 15
Окраска растения	Темно- зеленая	Темнозеле- ная с сизым оттенком	Зеленая	Зеленая
Высота растения в см	114,2	93,9	89,3	91,8
Число стеблей в кусте	3,9	3,2	3,6	3,4
Толщина стебля в мм	10,0	7,4	8,0	8,3
Число междоузлий	7,0	6,8	5,8	7,1
Ветвление	Отсутств.	Слаб.	Оч. слаб.	Ниже средн.
Опушение	Средн.	Сильн.	Средн.	Сильн.
Длина листа в см	44,5	42,0	41,6	49.7
Ширина листа в см	3,3	3,1	3,0	3,2
Тип метелки и окраска	Развесистая, свзелен.	Близкая к пониклой, свзелен.	Близкая к пониклой плотная, свзелен.	Близкая к пониклой, свзелен.
Дли на главной метелки в см	24,3	17,5	18,1	17,5
Длина веточки 1-го порядка нижнего яруса	13,1	8,8	12,1	9,0
телке	851,5	592,9	764,4	672,5
в главной метелке	47,9	58,0	Не учит.	84,6
Рорма зерна	Кругл.	Овальн.	Кругл.	Овальн.
Экраска зерна	Желто- красн.	Красн.	Бел.	Грязно- крем.
Осыпаемость	Выше средн.	Средн.	Средн.	Средн.
мбс. вес 1000 зерен в г	6,65	8,95	5,89	7,46

Учет урожая производился по главной метелке. Вес зерна варьировал от 0,57 до 7,92 г; в среднем у крупнозерного красного вес зерна с главной метелки 2,39 г, у крупнозерного кремового 0,75 г, у диплоидного 3,14 г. Из приведенных цифр видно, что плодовитость тетраплоидного проса значительно снижена: у крупнозерного красного она снижена на 25%, у крупнозерного кремового на 77%. Низкую продуктивность тетраплоидных растений следует отнести за счет малого числа колосков и высокого процента стерильных колосков. Абсолютный вес семян у обоих образцов тетраплоидного проса значительно выше, чем у диплоидного: у крупнозерного красного он превышает контроль на $34,5^{\circ}/_{\circ}$ и равен 8,95 г при 6,65 г у диплоидного; у крупнозерного кремового абсолютный вес зерна равен 7,46 г при 5.81 г у диплоидного, т. е. превышение на $26.6^{\circ}/_{o}$. Тетраплоидное просо отличается не только по размеру зерна, но и по форме. Форма зерна у тетраплоидного проса большей частью овальная, у диплоидного — круглая.

Сравнивая цифровые данные плодовитости тетраплоидного и диплоидного проса, видим, что тетраплоидное просо менее плодовито, чем диплоидное. Наиболее вороятной причиной пониженной плодови-

тости тетраплоидного проса является неправильное течение мейозиса с образованием квадривалентных комплексов хромосом. Тот факт, что по признаку плодовитости отдельных теграплоидных растений наблюдается резкое варьирование, позволяет повысить плодовитость тетраплоидного проса обычным методом отбора более плодовитых растений, у которых имеет место более правильное течение мейозиса. Возможно также устранить неправильности течения мейозиса и методом гибридизации различных тетраплоидов проса.

Наиболее перспективными, с нашей точки зрения, являются скрещивания тетраплоидов, принадлежащих к различным географическим расам. Теоретически можно предполагать, что повышение плодовитости у гибридов разных тетраплоидов проса будет итти на основе тех закономерностей, которые вскрыты нами при скрещивании аутотетра-

плоидов пшениц (2).

С целью получения тетраплоидного проса у других географических рас нами при участии О. И. Корчевской в 1947 г. начаты опыты по получению тетраплоидов у проса, собранного из различных областей БССР. Всего нами обработано различными концентрациями колхицина более 20 образцов. Среди потомства растений, обработанных колхицином, нами уже в 1948 г. выявлены тетраплоиды у 6 образцов, которые изучаются и будут использованы для скрещивания с имеющимися тетраплоидами для создания более продуктивных типов тетраплоидного проса.

Сельскохозяйственная академия им. К. А. Тимирязева

Поступило 17 V 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. Н. Аренкова, ДАН, **29**, № 4 (1940). ² А. Р. Жебрак и А. С. Афанасьева, ДАН, **59**, № 6 (1948).