ТЕХНИЧЕСКАЯ ФИЗИКА

н. д. моргулис и в. с. яговдик

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ОКСИДНО-БАРИЕВЫХ ТЕРМОКАТОДОВ

(Представлено академиком С. И. Вавиловым 10 XI 1947)

Оксидный термокатод является основным элементом разных современных электронных приборов и электронных устройств. Но несмотря на его очень широкое распространение и давнюю известность, природа электронной эмиссии из него известна лишь в общих чертах. Причина этого заключается в том, что основное значение для электронной эмиссии могут иметь разные электронные процессы, происходящие внутри объема оксидного термокатода и на внутреннем контакте, о которых еще очень мало известно (¹). Настоящая работа, начатая нами еще весной 1941 г. и возобновленная после длительного перерыва лишь недавно, посвящена исследованию комплекса явлений, происходящих внутри реального оксидного термокатода в процессе его электронной эмиссии.

Исследованный нами оксидный катод имел никелевый цилиндрический керн диаметром 1,25 мм и длиной 1,6 см с подогревом изнутри, покрытый слоем обычной оксидной пасты общей толщиной $d \leq 200$ µ, в который на расстоянии примерно 50, 80—100 и 150 µ от керна были вмазаны 3 зонда. Зонды представляли собой никелевые полосочки толщиной > 7 ч и шириной > 0,15 мм, намотанные в виде спирали в 2—3 витка так, чтобы не заслонять друг друга. На одном каком-нибудь очень небольшом участке оксидный слой счищался так. чтобы можно было при помощи оптического микропирометра Сименса определять не только температуру внешней поверхности оксида Т, но и температуру керна Т', а значит, и температурный перепад на оксидном слое $\Delta T = (T' - T)$. Цилиндрический анод с дырочкой для пирометрирования катода имел диаметр 7 мм и длину 16 мм. Все измерения производились с помощью припаянной к вакуумной установке лампы при ее непрерывной откачке; катод тщательно активировался. Описанная подробно в другом месте (²) измерительная схема состояла из тиратронного (с лампой ТГ-8/3000) генератора релаксационных колебаний, подававшего на анод исследуемой лампы экспоненциальные импульсы напряжения V_a с амплитудой до ≈ 1500 V, имевшие постоянную времени $\tau = CR$ в пределах примерно от 50 до 500 чсек. и частоту порядка 1 Hz. При помощи этих импульсов напряжения на экране катодного осциллографа Дюмонта 208-В наблюдались вольтамперные характеристики Эмиссионного тока исследуемого катода $I = f(V_a)$, которые затем переносились на график. Одновременно простым поворотом переключателя можно было наблюдать на экране осциллографа также и характеристику зависимости потенциала каждого из зондов V_s от V_a , т. е. — на основании зависимости $I = f(V_a)$ от силы проходящего через оксид эмиссионного тока /. Постоянная

времени т импульсов анодного напряжения V_a выбиралась 192 рсек., т. е. такой, чтобы здесь пракгически не сказывались известные временные процессы, характерные для импульсной эмиссии (²); последнее было специально проверено. Все измерения производились в рабочем интервале температур катода. Затем производились также измерения термо-эдс поперек оксидного слоя E_T между керном и каким-либо из зондов, зависящей от ΔT , для чего был использован обычный компенсационный метод.

Полученные в настоящей работе основные экспериментальные результаты могут быть очень кратко сведены к следующему.

1. Термо-эдс катода E_T имеет в самом начале процесса активации дырочный знак, который в процессе дальнейшей активации очень быстро переходит в электронный и далее таковым и остается. Перемена знака термо-эдс происходит сначала у внутреннего зонда, перемещаясь постепенно кнаружи катода. Более того, даже для активированного катода удается иногда наблюдать обратимое изменение знака термо-эдс с электронного на дырочный при соответствующем понижении температуры; например в одном случае температура инверсии была $\approx 1150^{\circ}$ К. Перепад температуры ΔT на нашем оксидном слое в разных случаях был в среднем порядка $\approx 100^{\circ}$, т. е. $\Delta T \ll T$.

2. Общий вид наблюдаемых на экране осциллографа характеристик электронного тока $I = f(V_a)$ и потенциала зондов $V_s = f(V_a)$, например для $T = 1015^{\circ}$ К и $\tau = 192$ рсек., представлен на рис. 1. Отсюда простым пересчетом, зная местоположение зондов, можно построить графики распределения потенциала $V = \varphi(x)$ внутри реального, хорошо активированного оксидного слоя катода при разных силах электронного тока I и при разных его температурах $T = 975 - 1185^{\circ}$ К. Пример подобных графиков представлен на рис. 2 для $T = 1070^{\circ}$ К. Экспериментальные зависимости $V = \varphi(x)$ дают обычно некоторый излом, при рассмотрении которого необходимо иметь также в виду небольшое постоянство температуры, а следовательно, и сопротивления поперек оксидного слоя.

3. Экстраполируя кривые $V = \varphi(x)$ из рис. 2 до их пересечения с осью ординат, мы получим значение скачка потенциала на внутреннем контакте оксидного слоя с никелевым керном ΔV_k при разных

величинах *I* и *T*; величины ΔV_k бывают обычно порядка нескольких вольт и лишь при низких *T* и больших *I* — десятков вольт. Из этих данных можно получить значение контактного сопротивления $R_{\kappa} = \Delta V_k/I$,

значение которого, в зависимости от силы эмиссионного тока *I* при разных *T*, представлено на рис. З. Мы видим здесь, особенно при низких *T*, своеобразную зави-

симость величины R_{κ} от I, характерную для известных явлений, связанных с наличием законтактных порных слоев. Если известна эффективная толщина запорного слоя, равная дебаевской длине экранирования x₀ при малых токах $(\lambda \ll 1 (3))$ и величине λx_0 при больших ($\lambda > 1$), то отсюда можно оценить порядок величины средней напряженности электрического поля в контакте $E_{\kappa} = \Delta V_k / x_0;$ принимая значение $x_0 \approx 10^{-5} - 10^{-4}$ см (см. ниже), мы получаем E_к≈ $\approx 10^5 \,\mathrm{V/cm}$. Таким образом, хотя это поле уже достаточно велико, однако вследствие его локализации в весьма тонкой приконтактной области оно может, очевидно, сказаться только в случае весьма тонко- $(d \approx x_0)$ катодов пленочных оксидно-бариевого или OKсидно-цезиевого типа, а не в

случае обычных, весьма толстых ($d \approx 50-100 \ \mu$) оксидных катодов. 4. Кривые $V = \varphi(x)$ из рис. 2 дают возможность определить полное сопротивление слоя между зондами R, а также и удельную про-

водимость материала оксида ов разных условиях опыта. Пример подобных значений величины $R_{21} = (V_{s2} - V_{s1})/I$ между первым и вторым зондами и ее зависимость от І при разных Т представлены на рис. 4. Мы видим здесь, что объемная проводимость реального оксидного слоя дает омический характер лишь при достаточно высоких температурах T ≥ 1120° K, причиной чего является, вероятно, некоторая неоднородность этого слоя. Напряженность электрического поля внутри оксида E = dV/dxявляется здесь весьма малой, ≈ 10³ V/см. Наконец, например, по формуле для температурной

$$\sigma = ebn \approx B \exp\left(-\zeta/kT\right) \tag{1}$$

249

оценить величину "внутренней" работы выхода электрона , оказавшейся здесь $\approx 0,8$ eV. Имея затем в виду, что сила эмиссионного тока равна

 $I = AT^2 \exp\left(-\frac{\zeta + \chi}{kT}\right), \qquad (2)$

можно при температурной зависимости отношения I/σ оценить раздельно величину "внешней" работы выхода электрона χ , оказавшейся здесь ≈ 0.9 eV. Таким образом, полная работа выхода электрона у нашего катода $\varphi = (\zeta + \chi)$ оказывается равной ≈ 1.7 eV, давая при этом при рабочей температуре $\approx 800^{\circ}$ C и $V_a \approx 1500$ V плотность эмиссионного тока I = 6.5 A/cm². Кроме того, полагая в формуле (1) подвижность $b \approx 100-500$ см²/V сек., мы получаем отсюда для $T = 1120^{\circ}$ K значение концентрации свободных электронов $n \approx 10^{15}$ см⁻³ и длины экранирования $x_0 \approx 10^{-5}$ (см. выше).

5. Наконец, из вольтамперной характеристики $I = f(V_a)$ (рис. 1) можно выяснить зависимость эмиссионного тока насыщения I от напряженности внешнего электрического поля E_a (эффект Шоттки). Используя при этом данные новой теории этого явления для полупроводниковых катодов (⁴), можно по указанному в этой статье методу оценить значение дебаевской длины экранирования x_0 и поверхностной концентрации свободных зарядов N_p . Подобным путем были получены следующие порядки величин: $x_0 \approx 10^{-5} - 10^{-4}$ см и $N_p \approx 10^{10}$ см⁻².

Таким образом, в настоящей работе был впервые получен ряд экспериментальных результатов, характеризующих объемные свойства реального эффективного оксидно-бариевого термокатода. Можно думать, что эти данные окажутся весьма полезными для понимания происходящих в нем процессов и для построения новой более совершенной теории термоэлектронной эмиссии современных эффективных катодов.

Киевский государственный университет им. Т. Г. Шевченко

Поступило 10 XI 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Моргулис, Изв. АН СССР, сер. физ., 5, 536 (1941). ² Н. Моргулис и М. Габович, ЖТФ, 16, 1097 (1946). ³ С. Пекар, Изв. АН СССР, сер. физ., 5, 422 (1941). ⁴ N. Morgulis, J. of Phys., 11, 67 (1947).