ХИМИЯ

О. Л. АРОНОВ, В. М. ТАТЕВСКИЙ и А. В. ФРОСТ

К ВОПРОСУ О ЗАТОРМОЖЕННОМ ВРАЩЕНИИ В РЯДУ 1,2-ДИГАЛОГЕНОЭТАНОВ

СПЕКТРЫ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА 1,2-ДИХЛОРЭТАНА И 1,2-ДИБРОМЭТАНА В РАСТВОРАХ

(Представлено академиком А. А. Баландиным 3 IV 1948)

В ряде работ (см. обзоры (1,2)) было установлено существование в жидкой фазе ротационных изомеров дигалогеноэтанов. Существенный интерес представляет изучение зависимости константы равновесия ротационных изомеров от температуры и от характера и концентрации растворителя.

Влияние температуры на константу ревновесия ротационных изомеров было рассмотрено в работах ряда авторов, в том числе и в

наших работах (3,4).

Константа равновесия ротационных изомеров K может быть выражена следующим образом:

$$K = A(I_{\omega_1}/I_{\omega_2}) = AK',$$

где I_{ω_1} и I_{ω_2} — интенсивности линий комбинационного рассеяния света, соответствующих первому — частота ω_1 и второму — частота ω_2 * ротационным изомерам; A — коэффициент, зависящий от величин I_{01} и I_{02} , представляющих собой интенсивности линий комбинационного рассеяния, приходящихся на 1 моль соответствующего изомера.

В настоящей статье мы остановимся на влиянии различных рас-

творителей на константу равновесия ротационных изомеров.

Этот вопрос был довольно подробно исследован Мицузимой и сотр. (5), которые исследовали $K_{\text{C}_2\text{H}_4\text{C}1}$, в различных растворителях (молекулярная концентрация дихлорэтана в их опытах равна $20^{\text{0}}/_{\text{0}}$, см. табл. 1).

Таблица 1

Зависимость константы равновесия ротационных изомеров дихлорэтана от природы применяемого растворителя (по данным (5))

Растворитель	Дихлор- этан	СН₃ОН	C¹H²OH	(C ₂ H ₅) ₂ O	C ₆ H ₁₄	C7H10	C ₆ H ₆
$I_{\omega_1}/I_{\omega_2}$	1,4	1,2	1,3	2,0	5,0	1,5	1,5

^{*} Для дихлорэтана принято (¹,²) $\omega_1=753$ см $^{-1};$ $\omega_2=653$ см $^{-1}.$ Для дибромэтана $\omega_1=659$ см $^{-1};$ $\omega_2=551$ см $^{-1}.$

⁵ ЛАН, т. 60, № 7

В работах (6) Мицузима и Морино отмечено изменение K' хлор-бромэтана от 2,5 в чистом веществе до 5,0 в растворе гексана. В. М. Татевский (7) нашел $K'_{\text{С,H_4Cl}_1}$ в растворе CCl_4 , равное 1,54, при молярной концентрации дихлорэтана на $\sim 75^{\circ}/_{\circ}$.

Этими данными исчерпывается в литературе фактический материал о влиянии растворителей на константу равновесия ротационных изо-

меров в ряду 1,2-дигалогеноэтанов.

Нами были исследованы спектры комбинационного рассеяния дихлорэтана и дибромэтана. Дихлорэтан исследовался нами в следующих растворителях: четыреххлористый углерод, гексан, гептан, циклогексан, бензол, спирт, нитробензол.

Результаты приведены в табл. 2. Дипольный момент дихлорэтана $\mu_{20^\circ}=1,3D,$ диэлектрическая постоянная DK=10,4. В чистом ди-

хлорэтане среднее K', по нашим измерениям (3,4), равно 1,12.

Таблица 2 Зависимость K'* дихлорэтана от концентрации и природы растворителя

					-				
	I. Растворитель ССI ₄				II. Растворитель гексан $^{\mu}C_{6}H_{14}=0;$ $DK_{C_{6}H_{14}}=1,85$				
Мол. конц.	$\mu_{\text{CCI}_4} = 0;$ $DK_{\text{CCI}_4} = 2,24$								
1,2 C ₂ H ₄ Cl ₂ , ⁰ / ₀	100	75,2	50,3	24,6	100	78,7	61,4	23,9	
$I_{\omega_1}/I_{\omega_2}$	1,12	1,37	1,68	3,17	1,12	1,17	1,23	2,6	
	III. Растворитель циклогексан $\mu_{C_6H_{12}} = 0;$ $DK_{C_6H_{12}} = 2,05$				IV. Растворигель гептан				
Мол. конц.				5	$\mu_{\text{C}_7\text{H}_{16}} = 0; \\ DK_{\text{C}_7\text{H}_{16}} = 1,97$				
1,2 C ₂ H ₄ Cl ₂ , ⁰ / ₀	100	75,2	50,2	25,4	100	78,7	61,4	23,0	
$I_{\omega_1}/I_{\omega_2}$	1,12	1,24	1,93	2,70	1,12	1,21	1,47	2,10	
V. Ра тель		VI. Раствори- тель спирт тель нитр бензол					po-		
^и Се <i>DK</i> Се	$ \mu_{\text{C}_6\text{H}_6} = 0; $ $ DK_{\text{C}_6\text{H}_6} = 2,28 $			$ \mu_{\text{C}_2\text{H}_5\text{OH}} = 1.7 $ $ DK_{\text{C}_2\text{H}_5\text{OH}} = 26.8 $			$ \frac{\mu_{C_6H_5NO_2} = 4,04;}{DK_{C_6H_5NO_2} = 3,12} $		
1,2 C ₂ H ₄ Cl ₂ , _{0/0} . 100 88,7	63,4	25,4	100	88,0	54,5	100	43,5	23,1	
$I_{\omega_1}/I_{\omega_2}$									

^{*} Ошибка в определении константы K' в табл. 2 и 3 оценена авторами, как и прежде $(^3)$, в \pm $10^{\rm o}/_{\rm o}$ от измеряемой величины.

Дибромэтан был снят нами в четыреххлористом углероде, гексане, гептане, циклогексане, бензоле, спирте и нитробензоле. Дипольный момент дибромэтана $\mu_{\text{C}_3\text{H}_4\text{Br}_3}=0.8~D$, диэлектрическая постоянная DK=4.86. Результаты приведены в табл. 3.

Таблица З Зависимость *К*' дибромэтана от концентрации и природы растворителя

	1. Растворнтель СС1 ₄					II. Растворитель гексан					
Мол. конц. 1,2 С ₂ Н ₄ Вг ₂ , ⁰ / ₀	100	84	,0	43,3	19,2	100	60	0,4	22,6		
$I_{\omega_1}/I_{\omega_2}$	7,0	7,2		6,0	6,2	7,	0	4,5	2,7		
Мол. конц.	III. Растворитель циклогексан						IV. Растворитель гептан				
1,2 C ₂ H ₄ Br ₂ , ⁰ / ₀	100	82,5		54,1	24,8	100	4:	2,4	21,4		
$I_{\omega_1}/I_{\omega_2}$	9,1	8,9		6,3 5,3		7,	,0	7,2	7,8		
	V. Растворитель бензол				аство ь спи						
Мол. конц. 1,2 С ₂ Н ₄ Вг ₂ , ⁰ / ₀	100	46,7	15,2	100	60,1	12,7	100	41,7	15,1		
$I_{\omega_1}/I_{\omega_2}$	7,0	5,7	3,9	9,1	8,9	4,6	9,1	4,1	2,1		

Так как K' чистого дибромэтана существенно зависит от температуры (3 , 4), то для того, чтобы полностью исключить изменение K'С, $_4$, $_6$, $_7$ по этой причине, следовало бы термостатировать съемку спектров комбинационного рассеяния растворов дибромэтана. Так как это нами сделано не было, то мы снимали в совершенно аналогичных условиях и на ту же пластинку чистый дибромэтан. Различие в значениях K' чистого дибромэтана, приведенных в табл. 3 (7,0—9,1), может объясняться небольшим изменением температуры при съемке двух серий смесей (I серия— CCl_4 , C_6H_{14} , C_7H_{16} , C_6H_6 ; II серия— C_6H_{12} , C_7H_5OH , $C_6H_5NO_2$).

Экспериментальная часть. Все спектры получены на одной и той же осветительной установке с использованием спектрографа "Штейнхель" на пластинках "ортохром" Н и D 600 НИКФИ. Все результаты получены путем фотометрирования на регистрирующем микрофотометре Цейсса. Приготовление и очистка веществ, установка для съемки спектров, методика расчета интенсивностей по микрофото-

граммам описаны ранее (3).

Обсуждение результатов. Дихлорэтан. Из рассмотрения данных табл. 2 следует, что константа равновесия ротационных изомеров дихлорэтана изменяется в зависимости от природы растворителя. Наиболее значительное увеличение K' имеет место в том случае, если применяемый растворитель неполярен. У веществ с дипольным моментом, близким к моменту μ_{C_2} н $_{\text{c}_1}$ с $_{\text{c}_2}$ дихлорэтана, как, например, у спирта, изменения K' почти не наблюдается. У вещества с

дипольным моментом, сильно превышающим $\mu_{\text{с.н.с.}}$ (нитробензол), наблюдается некоторое уменьшение K'. Поэтому можно предположить, что роль неполярного растворителя сводится главным образом, в первом приближении, к простому разбавлению основного вещества. Так как возрастание K' соответствует увеличению количества первой формы, то, очевидно, эта форма является мало полярной или совсем неполярной. Вторая ротационно-изомерная форма, следовательно, обладает большим средним дипольным моментом, нежели первая.

Удаление друг от друга полярных молекул, достигаемое введением неполярных растворителей, приводит в связи с этим к увеличению содержания неполярной формы. И обратно, добавление вещества с большим дипольным моментом (как нитробензол) приводит к увеличению содержания полярной формы. Замена одного неполярного растворителя другим мало сказывается на значении K', что согласуется с представлением о том, что, повидимому, основную роль играет эффект разбавления.

Бензол как растворитель по своему поведению ближе к растворителям средней полярности (спирт), чем к неполярным (гексан, гептан и т. д.). Возможным объяснением является большая поляризуемость бензола, приводящая к наведению индуцированного дипольного мо-

мента.

В случае дибромэтана закономерности, повидимому, значительно сложнее. Попытка объяснить поведение дибромэтана соображениями, высказанными выше, наталкивается на противоречие с экспериментальными данными. Повидимому, кроме полярности растворителя, существенную роль здесь играют также другие факторы.

Московский государственный университет им. М. В. Ломоносова

Поступило 27 III 1948

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Волькенштейн, Усп. хим., 13, 234 (1944). ² G. Glockler, Rev. Mod. Phys., 15, No. 4 (1943). ³ О. Аронов, В. Татевский и А. Фрост, Вестн. Моск. ун-та, № 1 (1948). ⁴ О. Аронов, В. Татевский и А. Фрост, ДАН, 60, № 3 (1948). ⁵ S. Mizushima, Y. Morino u. K. Higasi, Phys. Z., 35, 905 (1934). ⁶ S. Mizushima and Y. Morino, Sci. Pap. Inst. Phys. Chem. Tokyo, 29, 188 (1936). ⁷ В. М. Татевский, ЖФХ, 30, 129 (1946).