ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Е. П. ТАТИЕВСКАЯ, Г. И. ЧУФАРОВ и В. К. АНТОНОВ

КИНЕТИКА ВОССТАНОВЛЕНИЯ И ДИССОЦИАЦИИ ОКИСЛОВ МАРГАНЦА

(Представлено академиком И. П. Бардиным 21 IX 1947)

Сопоставление скоростей восстановления и диссоциации ряда окислов, а также равновесных упругостей кислорода при диссоциации имеет большое значение для выяснения механизма и кинетики восстановительных металлургических процессов. Экспериментальным материалом по восстановлению и диссоциации окислов меди (¹), а также окиси серебра было показано, что скорость восстановления этих окислов не находится в прямой зависимости от равновесной упругости кислорода при диссоциации и окислы с резко отличным сродством к кислороду могут иметь одинаковую скорость восстановления водородом или окисью углерода с единицы поверхности. Настоящая работа является дальнейшим продолжением наших исследований в указанном

направлении. Образцы окислов марганца были приготовлены следующим образом. Исходный препарат — химически чистый азотнокислый марганец высушивался и осторожно прокаливался при 200° С до постоянного веса. Для освобождения от упорно удерживающихся следов окислов азота навеска $\mathrm{MnO_2}$ перед каждым опытом прокаливалась при атмосферном давлении кислорода в течение 8 час. при 400° С. $\mathrm{Mn_2O_3}$ и $\mathrm{Mn_3O_4}$ получались разложением $\mathrm{MnO_2}$ в токе кислорода при 565° С и воздуха при 940° С, соответственно, до постоянного веса, точно отвечающего составу искомого окисла. Для определения величины поверхностей окислов $\mathrm{MnO_2}$, $\mathrm{Mn_2O_3}$ и $\mathrm{Mn_3O_4}$ снимались изотермы адсорбции азота при — 195° С и по точкам завершения мономолекулярного слоя вычислялись поверхности по методу Брунауера, Емметта и Теллера ($^{\circ}$). Исходная поверхность для $\mathrm{MnO_2}$ определена равной $^{\circ}$ 2,31 $\mathrm{M^2/r}$, а для $\mathrm{Mn_2O_3}$ и $\mathrm{Mn_3O_4}$ поверхности одинаковы и равны $^{\circ}$ 0,444 $\mathrm{M^2/r}$.

Таблица Равновесные упругости кислорода Р_{О₃} придиссоциации окислов марганца в мм Hg

1	I Температура в °К				
	500	700	900	1230	
$MnO \rightarrow Mn + \frac{1}{2}O_2 \dots \dots$ $Mn_3O_4 \rightarrow 3 MnO + \frac{1}{2}O_2 \dots \dots$ $3 Mn_2O_3 \rightarrow 2 Mn_3O_4 + \frac{1}{2}O_2 \dots$ $2 MnO_2 \rightarrow Mn_2O_3 + \frac{1}{2}O_2 \dots$	$2,52 \cdot 10^{-10}$	$2,26 \cdot 10^{-4}$	$2.0 \cdot 10^{-35}$ $7.2 \cdot 10^{-12}$ $3.38 \cdot 10^{-1}$ 945	4,38 · 10 ⁻²⁴ 1,83 · 10 ⁻⁵ 120,5	

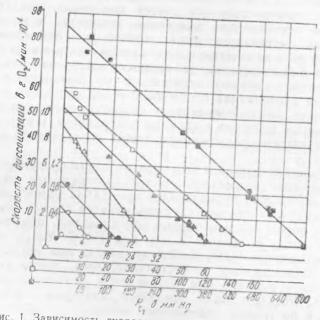
Опыты по кинетике восстановления проводились в вакуумной аппаратуре (1) с циркуляцией газа в замкнутом пространстве и вымораживанием паров воды. По уменьшению давления водорода за определенный промежуток времени определяли скорость восстановления. Диссоциация изучалась в другой аппаратуре с очень малым объемом, в которой по увеличению давления кислорода за единицу времени вычислялась скорость диссоциации.

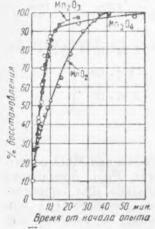
Равновесные упругости кислорода при диссоциации окислов марганца, приведенные в табл. 1, вычислены по известному термодинами-

ческому уравнению

$$\lg P_{\text{C}_2}^{1/9} = -\frac{H_{298}}{4,573 \, T} + \frac{S_{298}}{4,573} + a \, \frac{f(T/298)}{4,573} \,, \tag{1}$$

в котором H_{298} — стандартная теплота реакции при постоянном давлении, S_{298} — стандартная энтропия реакции, T — температура в °K, $f(T/298) = \ln(T/298) + 298/T - 1$, a — алгебраическая сумма теплоемкостей участвующих в реакции веществ. Результаты же наших опытов по определению равновесной упругости кислорода при диссоциации ${\rm MnO_2}$ и ${\rm Mn_2O_3}$ приведены в табл. 2.




Рис. 1. Зависимость скорости диссоциации ${\rm Mn_2O_2}$ от давления кислорода в газовой фазе

При относительно низких температурах экспериментально определенные $P_{\rm O_{\rm o}}$ хорошо совпадают с расчетными. Как видно из приведенных табл. 1 и 2, окислы марганца резко отличаются от упругости диссоциации, например, при 900°К Ро. для МпО, в 3·103 раза больше, чем над ${\rm Mn_2O_3}$, и в 10^{14} раз больше, чем над ${\rm Mn_3O_4}$.

Результаты опытов по исследованию кинетики диссоциации $\mathrm{Mn_2O_3}$ (рис. 1), так же как и MnO2, CuO(1), Ag2O, показали справедливость следующей зависимости скорости диссоциации от давления кислорода

$$V_{\text{дисс}} = K(P_{O_z} - p_{O_z}),$$

т. е. скорость диссоциации пропорциональна разности между равновесной упругостью кислорода P_{0} и давлением кислорода в газовой фазе p_{O_3} . Согласно равновесным упругостям диссоциации и резко отличной скорости диссоциации окислов марганца можно было ожидать значительно большую скорость восстановления MnO_2 по сравнению с Mn_2O_3 и особенно по сравнению с Mn_3O_4 . В действительности же восстановление всех трех окислов марганца протекает легко и количественно до MnO (рис. 2), причем во всех случаях скорости восстановления весьма велики по сравнению с диссоциацией окислов и поэтому механизм восстановительных процессов нельзя мыслить каким-то образом связанным с освобождением кислорода путем диссоциации.

Время от начала опыта

Рыс. 2. Восстановление MnO_2 , Mn_2O_3 и Mn_3O_4 водородом при 500° С и p_{H_3} =

=200 MM Hg

Таблица 2

Сравнение вычисленных равновесных упругостей кислорода при диссоциации окислов марганца с полученными экспериментальным путем

	Темп-ра	Р _{О2} выч _{исл.} в мм Нд	P_{O_2} найд, в мм Hg		
	в°К		дисс.	окися.	
MnO_3	700	3,52	3,6	обратная реакция не	
MnO_2	750	19,63	20 - 23	имеет места	
Mn_2O_3 .	1000	3,98	3,0	3,7	
$M_{\Pi_2}O_3$	1050	10,98	10,0	14,5	
Mn ₂ O ₃	1100	27,60	28 - 30	46,0	
Mn_2O_3	1150	50,40	72	116,5	

Приблизительно одинаковым скоростям восстановления ${\rm MnO_2}$, ${\rm Mn_2O_3}$ и ${\rm Mn_3O_4}$ соответствуют близкие значения кажущейся энергии активации, вычисленной по уравнению Аррениуса $V=Ae^{-E/R^T}$ по опытным данным: $E_{\rm восст}$ ${\rm MnO_2}{=}24\,000$ кал./моль, $E_{\rm восст}$ ${\rm Mn_2O_3}{=}$ = 22 000 кал./моль, $E_{\rm восст}$ ${\rm Mn_3O_4}{=}22\,000$ кал./моль, тогда как энергия активации процесса диссоциации значительно больше, а именно

 $E_{\text{лисс}} \text{ Mn}_2\text{O}_3 \cong 60\,000 \text{ кал./моль.}$

Диссоциация $\rm MnO_2$ до $\rm Mn_2O_3$ имеет место в той же температурной области, в которой легко и количественно протекает восстановление, и потому энергии активации обоих этих процессов не так резко отличаются друг от друга. Однако и в этом случае удаление кислорода из твердой фазы в присутствии восстановителя происходит главным образом за счет реакции с адсорбированными молекулами водорода и только в незначительной степени путем диссоциации окисла с освобождением свободного кислорода. Например, при 527° С максимальная скорость удаления кислорода от 1 г $\rm MnO_2$ путем диссоциации при $\rm p_{O_1}=0$ равна $\rm 0.6\cdot10^{-4}$ г $\rm O_2/Mин$., а путем восстановления при $\rm p_{H_2}=200$ мм $\rm Hg$ и температуре 500° С значительно большая, около $\rm 150\cdot10^{-4}$ г $\rm O_2/Mиh$. Трудная восстановимость $\rm MnO$ до металла является следствием установления равновесия в газовой фазе при ничтожно малом содержании в нем паров воды.

Константы равновесия при восстановлении окислов марганца водородом при разных температурах приведены в табл. 3 и вычислены как частное от деления константы равновесия реакции диссоциации окислов марганца $K_{\text{мп}_m,0_n}$ на константу равновесия реакции диссоци-

ации водяного пара K $_{\text{H,O}}$ при той же температуре:

$$K_{p} = \frac{K_{\text{M}\pi_{m}\text{O}_{n}}}{K_{\text{H}_{2}\text{O}}} = P_{\text{O}_{2}}^{1/2} : \frac{P_{\text{H}_{2}}P_{\text{O}_{2}}^{1/2}}{P_{\text{H}_{2}\text{O}}} = \frac{P_{\text{H}_{2}\text{O}}}{P_{\text{H}_{2}}}.$$
 (2)

Таблица

Константы равновесия при восстановлении окислов марганца водородом

	Температура в °K					
	500	700	900	1 200	2 500	
$MnO + H_2 \rightarrow Mn +$						
$+H_2O$	1,2 · 10-14	2,4 · 10 -10	$5,62 \cdot 10^{-8}$	5,89 · 10-6	9,55 · 10-	
$+ H_2O$	7,24 · 104	4,37 · 104	3,39 · 104	1,2 · 104	_	
$\rightarrow 2Mn_3O_4 + H_2O$. $2MnO_2 + H_2 \rightarrow$	4,68 • 1016	2,19 · 1012	$7,24 \cdot 10^9$	3,09 · 107	-	
$\rightarrow Mn_2O_3 + H_2O$.	3,39 · 1019	2,69 - 1014	3,89 · 1011			

Как видно из табл. 3, только в случае восстановления МпО равновесие устанавливается при очень малых значениях $P_{
m H_2O}$, преодолеть которые не представляется возможным. Действительно, при парциальном давлении водорода в 200 мм Hg равновесное давление H₂O при $800^{\circ}\,\mathrm{K} = 9,56\cdot 10^{-7}\,\mathrm{мм}$ Hg, т. е. ничтожной величине, и водяной пар в таком количестве всегда может присутствовать в газовой фазе хотя бы за счет газовыделения стекла, и поэтому восстановление MnO не может иметь места. При 1000° К $P_{\rm H_2O}$ при восстановлении $MnO = 6,78 \cdot 10^{-5}$ мм Hg. Простой расчет показывает, что для полного восстановления 1 г МпО при 1000° К и давлении $H_2 = 200$ мм Hg надо пропустить над навеской для увода образующихся водяных паров около 4000000 л абсолютно сухого водорода. Следовательно, трудная восстановимость МпО должна быть объяснена очень малым значением $P_{
m H_{2O}}$ при равновесии, и этим MnO действительно резко отличается от всех остальных окислов марганца.

Резлуьтатами настоящего исследования подтверждается представление о механизме восстановления, связанном с адсорбцией молекул восстановителя на поверхности окисла, поверхностной реакцией и десорбцией газообразных продуктов реакции, причем наиболее медленной стадией является поверхностная реакция, на которую оказывает тормозящее влияние адсорбция газообразных продуктов реакции. Такой механизм вполне объясняет то весьма важное наблюдение, что окислы с резко различным сродством к кислороду могут иметь одинаковую скорость восстановления водородом или окисью углерода при

равной величине реакционной поверхности.

Институт химии и металлургии Уральского филиала Академии Наук СССР

Поступило 21 VIII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. П. Татиевская и Г. И. Чуфаров, Изв. АН СССР, ОТН, № 7, 1005 (1946). ² S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60,