ФИЗИЧЕСКАЯ ХИМИЯ

Г. Б. КЛАРК, член-корреспондент АН СССР Г. В. АКИМОВ и И. А. ЛЕВИН

МНОГОЭЛЕКТРОДНЫЕ ЧАСТИЧНО ЗАПОЛЯРИЗОВАННЫЕ СИСТЕМЫ

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СЛОЖНОЙ МНОГОЭЛЕКТРОДНОЙ СИСТЕМЫ (СОЕДИНЕНИЕ "ЗВЕЗДОЙ")

Теоретически вопрос о сложной многоэлектродной системе, где одинаково важны и омическое сопротивление и поляризация, был разобран в трех предыдущих работах (¹⁻³).

Чтобы экспериментально проверить решение задачи для сложной многоэлектродной системы, нами была составлена модель из 4 электродов Cu, Fe, Pt и Zn, соединенных "звездой". Площади для всех электродов были выбраны различные, сопротивление в цепи каждого электрода было включено разное.

Предварительно были сняты поляризационные кривые для каждого из электродов; значения удельных поляризаций были умножены на соответствующие величины площадей и, таким образом, все кривые могли быть нанесены на одну диаграмму, изображенную иа рис. 1*.

После графического суммирования кривых поляризации для каждого из электродов с соответствующей прямой P_R (омического падения напряжения в данном участке цепи) мы получили суммарные кривые поляризации для всех электродов: $P_{Cu + 100\Omega}$, $P_{Fe + 50\Omega}$, $P_{Pt + 10\Omega}$ и $P_{Zn + R}$, где R = 50, 150, 300 и 700 Ω .

Графическое сложение суммарных кривых поляризации дает сложную анодную и сложную катодную кривые.

Точкой пересечения этих кривых определяется значение общего измеряемого потенциала данной многоэлектродной системы ($E_{\rm ofu}$) и сила тока ($J_{\rm ofu} = \Sigma J_A = \Sigma J_K$).

Сила тока в цепи каждого из электродов при данном соотношении величин площадей и омических сопротивлений определяется точками пересечения суммарных поляризационных кривых (P_{Cu+R}, P_{Fe+R} ит.д.) с прямой, проходящей через E_{ofut} .

На рис. 1 такое построение дано для четырех различных значений сопротивления в цепи электрода Zn.

В табл. 1 дано сравнение экспериментальных результатов с расчетными; совпадение результатов графического построения суммарных кривых поляризации и определяемых графически величин сил токов в цепи каждого из электродов с результатами опыта вполне удовлетворительное.

^{*} Необходимо отметить, что на поляризационных кривых сила тока, соответствующая диффузионному порогу, может изменяться в довольно широких пределах (для прямого и обратного ходов); поэтому трудно ожидать очень близкого совпадения значений потенциала, соответствующих поляризационным кривым, снятым в отдельных опытах, со значениями, устанавливающимися в сложной системе.

Таким методом построения можно определить как величину, так и направление тока в цепи каждого из электродов сложной системы. Если прямая $E_{\rm oбщ}$ пересекает суммарную кривую анодной поляризации, то этот электрод в данной системе будет играть роль анода; если же она пересекает суммарную кривую катодной поляризации, то электрод будет работать как катод.

Рис. 1. Многоэлектродная система Си — Pt — Fe — Zn в 1 N NaCl. Сплошные линии — поляризационные кривые (P_{Cu} , P_{Pt} , P_{Fe} , PZ_n); пунктирные линии — суммарные поляризационные кривые для каждого электрода, включающие и омическое падение напряжения ($P_{Zn} + R$, $P_{Cu} + R$, $P_{Pt} + R$ и $P_{Fe} + R$); кривые штрих-пунктир сумма всех катодных и соответственно анодных кривых; прямые $P_R = JR$ — омические падения напряжения, соответствующие различным сопротивлениям

В многоэлектродной системе один и тот же электрод, в зависимости от соотношения сопротивления, может быть и анодом и катодом.

Разберем конкретный пример. При $R_{Zn} = 700 \Omega E_{obut} = -212 \text{ mV}$, линия E_{obut} пересекает суммарную катодную кривую P_{Cu+R} при J = 0,75 mA, а кривую P_{Pt+R} при J = 0,5 mA; таким образом, Си и Pt — катоды. Сумма токов равна 1,25 mA.

Эта же линия E_{o5iii} пересекает суммарную анодную кривую $P_{Fe(A)+R}$ при $J = -0.35 \,\mathrm{mA}$ и анодную кривую P_{Zn+R} при $J = -0.85 \,\mathrm{mA}$. Сумма анодных токов равна 1,2 mA; таким образом, Fe и Zn аноды.

При R_{Zn} = 300, 150 и 50 Ω линия E_{obm} пересекает суммарные катодные кривые Cu, Pt и Fe и, таким образом, при уменьшении сопротивления в цепи цинка железо становится катодом; в системе остается только один анод Zn. Например, R_{Zn} = 150 Ω , E_{obm} = -442 mV, J_{Cu} = =1,6 mA, J_{Pt} = 0,5 mA, J_{Fe} = 0,45 mA. Сумма сил тока в катодных ветвях равна 2,5 mA, сила тока в цепи цинка J_{Zn} равна 2,4 mA.

Таблица 1

Сравнение экспериментальных результатов с расчетными для сложной многоэлектродной системы Сu—Pt—Fe—Zn в 1 N NaCl

	Cu			Pt			Fe			Zn			Общее	
	<i>R</i> , Ω	Ј, тА	E, mV	R, Ω	J, mA	E, mV	R, Ω	J, mA	E, mV	R, Ω	Ј, шА	E, mV	J, mA	E, mV
Расчетное Измеренное	100	$^{+0,75}_{+0,79}$	$-137 \\ -132$	10	$^{+0,5}_{+0,43}$	$-212 \\ -212$	50	-0,35 -0,35	$-257 \\ -244$	700	$-0,85 \\ -0,85$	$-802 \\ -802$	$^{1,2}_{1,2}$	$-212 \\ -217$
Расчетное Измеренное	100	$^{+1,2}_{+1,2}$	$-187 \\ -185$	10	$^{+0,5}_{+0,43}$	$-302 \\ -302$	50	$^{+0,2}_{+0,16}$	$-295 \\ -297$	300	-1,7 -1,7		1,8 1,79	
Расчетное Измеренное	100	$^{+1,6}_{+1,6}$	$-270 \\ -292$	10	+0,5 +0,43	438 438	50	$^{+0,45}_{+0,4}$	-410 -422	150	$-2,4 \\ -2,4$		$2,5 \\ 2,43$	$-435 \\ -442$
Расчетное Измеренное	100	$^{+1,6}_{+1,5}$	$-480 \\ -492$	10	$^{+0,95}_{-0,8}$	$-627 \\ -637$	50	$^{+0,8}_{+0,9}$	$-592 \\ -597$	50	$^{-3,3}_{-3,1}$		$3,3 \\ 3,2$	640 647

Примечание. 1) Площади электродов: Си = 100 см²; Fe = 50 см²; Zn = 70 см²; Pt = 50 см². 2) Внутреннее сопротивление нами не учитывалось, оно было порядка 1Ω. 3) Значения потенциалов даны по водородной шкале.

Правильность данного графического решения была проверена также и на ряде различных других комбинаций омических сопротивлений для той же системы электродов в спокойном растворе и при перемешивании. Кроме того, была исследована система Cu — Fe — Mg — Zn в 1 N NaCl и получены аналогичные результаты.

Резюмируя, можно сказать, что знание поляризационных диаграмм, соотношения площадей и величин омических сопротивлений в различных цепях системы позволяет решить вопрос о распределении полюсов сложной многоэлектродной системы при соединении на "звезду" и определить силу тока в каждой ветви системы.

Решение этого вопроса при последовательно соединенных электродах будет дано в другом нашем сообщении.

Лаборатория коррозии сплавов Института физической химии Академии Наук СССР

Поступило 29 VII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. В. Акимов и Г. Б. Кларк, ДАН, 58, № 5 (1947). ² И. А. Левин, Г. В. Акимов и Г. Б. Кларк, ДАН, 58, № 7 (1947). ³ Г. В. Акимов и Г. Б. Кларк, ДАН. 58, № 8 (1947). ⁴ Г. Б. Клар[к и Г. В. Акимов, ДАН, 58, № 9 (1947).