ФИЗИОЛОГИЯ РАСТЕНИЙ

п. с. беликов и В. И. ОЛЕЙНИКОВА

Қ ФИЗИОЛОГИИ НАҚОПЛЕНИЯ ҚАУЧУҚА В ҚОРНЯХ СЕЛЕКЦИОННЫХ ФОРМ ҚОҚ-САГЫЗА

(Представлено академиком Н. А. Максимовым 14 VII 1947)

Первые селекционные сорта кок-сагыза, сорт № 485 и тетраплоид проф. Навашина, в отдельные периоды жизни резко отличаются от так называемого плантационного (несортового) кок-сагыза по интенсивности накопления корнями органического вещества: сорт № 485, как более позднеспелый, дает наиболее интенсивные приросты корневой массы в конце вегетационного периода, тетраплоид проф. Навашина — в начале (²); сорт № 485 зацветает в массе только на втором году жизни, тетраплоид Навашина — на первом году. Это обстоятельство делает особо актуальным сравнительно-физиологическое изучение названных сортов, которое позволяет:

1. Экспериментально проверить правильность выбранного направления в селекции — выведение сортов кок-сагыза, не цветущих на первом

году жизни (5).

2. Выяснить теоретически важный вопрос о том, в какой зависимости находится интенсивность каучуконакопления от возрастного состоя-

ния растения.

Работа проводилась на Михневской экспериментальной базе (Московская обл.) Института каучуконосов в течение двух лет (1945 и 1946 гг.) при резко различных погодных условиях. Вегетационный период 1945 г. отличался избыточной влажностью, в 1946 г. была засуха в весенне-летнее время. В 1946 г. изучение сортсв велось одновременно на двух фонах: в одном случае растения высевались на том же участке, что и в 1945 г. (неудобренный участок), в другом — на участке, удобренном полной дозой минеральных удобрений (N —90 кг/га, P_2O_5 — 180 кг/га, K_2O — 60 кг/га) и поливаемом. Семена подвергались предпосевной подготовке по методике Попцова (10) и высевались гнездами на расстоянии 20×10 см. После прорывки оставалось по 1 растению в лунке. Таким образом достигалась одинаковая густота стояния для всех сортов.

Копка корней для определения каучука проводилась в три срока, а именно: когда растения кок-сагыза, цветущие на первом году жизни, обычно вступают в фазу цветения (июль), в фазу окончания плодоно-

шения (август) и в конце вегетационного периода (октябрь).

В пробу каждого сорта шло около 200 растений, выращенных на делянках в 5-кратной повторности; через 1—2 часа после копки корни фиксировались в аппарате Коха и доводились до воздушно-сухого состояния при температуре 70° С. Каучук определялся щелочным методом (3). Приводимые в табл. 1 данные по процентному содержанию каучука представляют среднее арифметическое из трех повторений.

Относительная вязкость бензольных растворов каучука определялась вискозиметром Оствальда, подготовка материала к анализу велась обычным способом $(^6)$, но без насыщения растворителя азотом. Результаты представлены в табл. 1.

Приведенные данные показывают, что:

1. Корни первых сортов кок-сагыза накапливают каучука за вегетационный период больше, чем корни плантационного (несортового) кок-сагыза; однако степень этих различий резко меняется в зависимо-

сти от условий выращивания.

2. В условиях наиболее интенсивного цветения (удобренный участок, 1946) и там, где отчетливо наблюдался уход растений в покой (неудобренный участок, 1945), первое место по количеству каучука, накопленному в корнях, занял сорт № 485.

3. В условиях, задержавших цветение (неудобренный участок, 1946),

первое место занял тетраплоид Навашина.

4. В первый период жизни, до массового плодоношения (июльский срок наблюдений), тетраплондный кок-сагыз интенсивно накапливает каучук: абсолютное и относительное содержание каучука в корнях тетраплсидного кок-сагыза в этот период значительно выше, чем у сорта № 485 и плантационного (несортового).

5. В этот же период у сорта № 485 накопление каучука не только не интенсивнее, чем у плантационного (несортового) кок-сагыза, но

обнаруживает даже в двух случаях тенденцию к снижению.

6. В условиях, вызывающих интенсивное цветение (неудобренный участок, 1945 и удобренный участок, 1946), вязкость каучука у сорта № 485 выше, чем у несортового кок-сагыза, и одинаковая в условиях,

задерживающих цветение (неудобренный участок, 1946).

Из перечисленного выше вытекает, что ход накопления каучука у первых сортов кок-сагыза резко различен. Сущность этих различий, повидимому, заключается в том, что у тетраплоидного кок-сагыза раньше наступает максимум в ходе каучуконакопления и раньше начинается возрастное затухание его. У сорта № 485, наоборот, позже наступает максимум каучуконакопления и более длительное время удерживается этот процесс на высоком уровне. Другими словами, возрастные изменения в ходе каучуконакопления, очевидно, подчинены тем общим закономерностям, которые сформулированы в теории

Кренке применительно к диагностике скорослелости (4).

Сказанное находится в полном соответствии с современными знаниями об элементах, определяющих накопление каучука (9). Известно, что у кок-сагыза только до периода плодоношения наблюдается высокая камбиальная активность и в связи с последним именно до плодоношения заканчивается заложение вместилищ каучука млечной системы. В дальнейшем онтогенезе число млечников остается постоянным, происходит лишь некоторое увеличение их объема. Таким образом, чем более благоприятны внутренние и внешние факторы роста в этот период (до плодоношения), тем более каучуконосными должны быть корни. Это и отмечено нами: у тетраплоидного кок-сагыза (в сравнении с сортом № 485), по наблюдениям от 3 VII, на высоком агрофоне (удобренный участок) наблюдается относительно самое высокое содержание каучука.

После фазы плодоношения важнейшую роль приобретает процесс заполнения млечной системы каучуком. В этот период, можно думать, скороспелые формы должны вновь попадать в более выгодное положение, так как углеводный потенциал, рассматриваемый обычно как внутренний фактор каучукообразования, у скороспелых форм выше (2). Оказалось, что в условиях задержанного развития (неудобренный участок, 1946) содержание каучука у скороспелых форм действительно

корнях кок-сагыза Накопление каучука и сухого вещества в

								19	45 r	0 д						
			26 1	июля				23 август	ста				4 OKT	октября		
Характеристика участка	Сорт кок-сагыза	Абс. сухой вес 100 кор- ней в г	% каучука	Каучук в 100 корнях в г	Каучук в % от стандарта	Абс, сухой вес 100 кор- ней в г	виучуния %	в г 100 корнях Каучук в	Каучук в %	% цветших растений	A6c, cyxoñ B3c 100 kop- HeM B f	% каучука	Каучук в 100 корнях в г	каучук в %	% растений, уш дших в покой *	Мол. вес каучука в тыс. **
Неудобренный	Плантационный (несортовой)	0,79	4,1	2,75	100	165,2	7,0	11,56	100	62,2	264,2	7,5	19,82	100	34,5	112,
	Copr M 485	2,99	4,2	2,80	101,8	187,5	J+6	14,25	123,3	3 49.2	344,2	7,7	26,50	133,7	7,2	140
	Тетраплоидный	114,0	4,7	5,36	194,9	270,8	9,9	17,87	154,6	9,08	334,2	6,5	21,72	109,6	5,14	104
								1 0 4	46 r	т 0						
			3 и	июля				22 abrycta	Ta				16 октября	80		Относит. С=0,25°/0
Неудобренный	Плантационный (несортовой)	14,5	2,5	0,36	100	122,5	7,0	8,58	100	29,1	223,0	7,6	16,95	100	1	3,86
	Copr Nº 485	11,5	2,6	0,30	83,3	155,6	8,9	10,58	123,3	5,4	295,0	6,8	20,06	118,3	1	3,84
	Тетраплоидный	28,5	3,5	1,00	277,7	219,5	7,1	15,58	181,6	26,0	310,0	7.7	23.87	140,8		3,75
Удобренный	Плантационный (несортовой)	59,0	3,6	2,12	100	263,8	5,6	14,77	100	70,0	328,0	6,3	20,66	100		3,56
	Copr No 485	61,8	2,9	1,79	84,4	321,8	6,2	19,95	135,1	32,0	442,5	8'9	30,09	145,6	1	3,99
	Теграплоидный	89.0	4,9	4,36	205,7	320,0	ь Б	20,80	140,8	91,0	415,0	6,0	28, 22	136,6		3,99

В 1945 г. подстеты не проводились, так как массового ухода растений в покой не наблюдалось.
Вязкость каучука в 1945 г. определялась А. И. Филько.

выше. В противоположных условиях (неудобренный участок, 1945 г. и удобренный участок, 1946 г.) содержание каучука к концу вегетационного периода у скороспелых форм становилось либо таким же, как и у позднеспелых, либо заметно снижалось. Это обстоятельство хорошо согласуется с тем, что первичный процесс каучуконакопления, именно образование каучука, связано с ростовыми процессами (1). Если они подавлены, то синтез сахаров может опережать образование каучука. Здесь мы уже выходим за рамки нашей темы и поэтому ограничимся следующим заключением.

Сравнительно-физиологическое изучение первых сортов кок-сагыза приносит новое подтверждение того, что для корневых каучуконосов, в отличие от таких, например, как гваюла, в интересах высокой продуктивности необходимо больше заботиться о том, чтобы препятствовать излишне быстрому завершению первого периода роста, когда в основном идет закладка вместилищ каучука, чем о том, чтобы предотвратить

излишнее его затягивание (9).

Для кок-сагыза как растения эфемероидного типа (7) окультуривание означает прежде всего преодоление раннего затухания ростовых процессов, связанных с деятельностью камбия, что достигается, в частности, устранением цветения на первом году жизни. В этом смысле сорт № 485 практически доказывает правильность указанного направления.

Что касается тетраплоидного кок-сагыза проф. Навашина, то он, с одной стороны, служит блестящим новым подтверждением того, что экспериментальное создание полиплоидов является могучим средством быстрого получения новых форм; с другой — следует согласиться с проф. Ничипоровичем, что хозяйственно ценные сорта кок-сагыза могут быть созданы этим методом в сочетании с отбором (8).

Лаборатория физиологии Всесоюзного научно-исследовательского института каучуконосов

Поступило 14 VII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. С. Беликов и Б. Л. Липман, ДАН, 50 (1945). ² П. С. Беликов, Б. Л. Липман и В. И. Олейникова, ДАН, 54, № 6 (1946). ³ Инструкция по учету динамики каучуконакопления и определения каучука в корнях кок-сагыза, М., 1943. ⁴ Н. П. Кренке, Теория циклического старения и омоложения растений "М., 1940. ⁵ А. И. Купцов, Сборн. Промышленные каучуконосы СССР, под общей ред. проф. А. А. Ничипоровича, 3:5, 1938. ⁶ С. М. Маштаков, Вестн. с-х. науки, Технические культуры, в. 3 (1940). ⁷ А. А. Ничипорович, Сборн. Промышленные каучуконосы СССР, 135, 1938. ⁸ А. А. Ничипорович, Л, А. Остапенко и Н. Г. Васильева, Изв. АН СССР, сер. биол., № 2 (1941). ⁹ А. А. Ничипорович, Тр. Ин-та физиологии растений им. К. А. Тимирязева, 3, в. 2 (1946). ¹⁰ А. В. Попцов, Сов. каучук, № 5 (1934).