Доклады Академии Наук СССР 1948. Том LIX, № 1

МАТЕМАТИКА

М. А. КРАСНОСЕЛЬСКИЙ

О РАСШИРЕНИИ ЭРМИТОВЫХ ОПЕРАТОРОВ С НЕПЛОТНОЙ ОБЛАСТЬЮ ОПРЕДЕЛЕНИЯ

(Представлено академиком М. А. Лаврентьевым 14 Х 1947)

1. Оператор A, действующий в унитарном пространстве \mathfrak{H} , будем называть эрмитовым, если

$$(Af, g) = (f, Ag)$$

при любых $f, g \in \mathfrak{D}(A)$. Нас будут интересовать эрмитовы и, в частности, самосопряженные (гипермаксимальные) расширения \tilde{A} оператора A.

Отметим, что расширения \tilde{A} оператора A, для которого $\Re(A) \subset \mathfrak{D}(A)$, будут обычными расширениями M. А. Наймарка $(^1,^2)$ с выходом в пространство \mathfrak{D} из "естественного" для оператора A пространства $\mathfrak{D}(A)$.

Эрмитовы расширения $ar{A}$ оператора A, для которых

$$\mathfrak{D}(\check{A}) \subset \overline{\mathfrak{D}(A)},$$

будем называть уплотняющими расширениями. Операторы, не имеющие уплотняющих расширений, будем называть полумаксимальными.

2. Для замкнутых эрмитовых операторов с неплотной областью определения верно основное в теории расширения эрмитовых операторов с плотной областью определения утверждение Дж. Неймана:

Теорема 1. Замкнутый эрмитов оператор А, действующий в унитарном пространстве Ф, всегда допускает максимальные эрмитовы расширения в Ф.

Самосопряженные (гипермаксимальные) расширения в \$ зам-кнутый эрмитов оператор А допускает тогда и только тогда, когда равны его дефектные числа.

Уже из этой теоремы непосредственно следует, что у всякого допускающего замыкание эрмитова оператора есть самосопряженные расширения, — возможно, с выходом в расширенное пространство.

3. Будем обозначать через $\mathfrak B$ ортогональное дополнение к $\mathfrak D(A)$ $\mathfrak B$ $\mathfrak B$. Проекцию подпространства $\mathfrak B$ на дефектное подпространство $\mathfrak R_\lambda$ будем обозначать через $\mathfrak M_\lambda$.

Определим на элементах из \mathfrak{M}_{λ} оператор V равенством

$$VP_{\mathfrak{R}_{\lambda}}h = P_{\mathfrak{R}_{\lambda}}h, \quad h \in \mathfrak{B}.$$

Оператор V, как легко видеть, изометричен. T е o рем a 2. Пусть A — замкнутый эрмитов оператор, действующий s унитарном пространстве \mathfrak{H} , c равными дефектными числами. Общая форма его самосопряженных расширений $ilde{A}$ в пространстве & дается формулой

$$\tilde{A}(g+\varphi-U\varphi)=Ag+\lambda\varphi-\lambda U\varphi, g\in\mathfrak{D}(A), \varphi\in\mathfrak{R}_{\lambda},$$

где $\mathit{U}-$ оператор, изометрически отображающий дефектное подпространство \mathfrak{N}_{λ} на дефектное подпространство $\mathfrak{N}_{\overline{\lambda}}$ и не принимающий ни на одном элементе из Т, того же значения, что опеpamop V.

Оказывается, что каждый элемент f из области определения опе-

ратора $\mathfrak{D}(A)$, имеющий в силу теоремы 2 вид

$$f = g + \varphi - U\varphi$$
, $g \in \mathfrak{D}(A)$, $\varphi \in \mathfrak{N}_{\lambda}$,

однозначно определяет "порождающие" его элементы $g \in \mathfrak{D}\left(A\right)$ и $\phi \in \mathfrak{R}$ а. Это следует из того, что равенство

$$g + \varphi + \psi = 0$$

при $g\in\mathfrak{D}$ (A), $\phi\in\mathfrak{N}_{\lambda}$, $\psi\in\mathfrak{N}_{\overline{\lambda}}$ имеет место тогда и только тогда, когда существует такой элемент $h \in \mathfrak{B}$, что

$$P_{\mathfrak{R}(A-\lambda E)}h = \frac{1}{\overline{\lambda}-\lambda}(Ag-\lambda g), \quad \varphi = P_{\mathfrak{R}_{\lambda}}h, \quad \psi = -V\varphi.$$

Последнее утверждение дополняет два предложения М. А. Наймарка ((1), теоремы 8 и 9) о линейной зависимости элементов из $\mathfrak{D}(A)$, \mathfrak{N}_{λ} и $\mathfrak{N}_{\lambda}^{\gamma}$ для эрмитовых операторов с неплотной областью определения.

4. Ортогональные дополнения к Та в дефектном подпространстве % будем называть полудефектным подпространством оператора A и обозначать через \mathfrak{N}_{λ} . Размерности полудефектных подпространств будем называть полудефектными числами.

Как и дефектные числа, полудефектные числа обладают свойством инвариантности: размерности полудефектных подпространств $\mathfrak{N}_{\lambda}^{'}$ и $\mathfrak{N}_{\mu}^{'}$ одинаковы, если х и р принадлежат одной (верхней или нижней) полу-

плоскости комплексной плоскости.

Теорема 3. Замкнутый эрмитов оператор А полумаксимален тогда и только тогда, когда раствор $\theta(\mathfrak{B},\mathfrak{M}_{\lambda})$ линейных множеств \mathfrak{B} и \mathfrak{M}_{λ} (см. (3)) меньше единицы и одно из полудефектных чисел равно нулю.

Отметим, что из $\theta(\mathfrak{B},\mathfrak{M}_{\lambda})$ < 1 для некоторого λ (Im $\lambda \neq 0$) следует,

что $\theta(\mathfrak{B}, \mathfrak{M}_{\mu}) < 1$ при всех μ (Im $\mu \neq 0$).

Так как оператор V замкнут тогда и только тогда, когда раствор $\theta(\mathfrak{B},\mathfrak{M}_{\lambda})$ < 1, то условие полумаксимальности эрмитова оператора можно формулировать и так: Теорема 3". Замкнутый эрмитов оператор А полумаксима-

лен тогда и только тогда, когда одно из его полудефектных

чисел равно нулю и оператор V замкнут.

На вопрос о том, у всякого ли эрмитова оператора существуют полумаксимальные расширения, ответ дается положительный. Однако не у всякого замкнутого эрмитова оператора есть замкнутые полумаксимальные расширения.

Теорема 4. Для того чтобы эрмитов оператор А имел замкнутые полумаксимальные расширения, необходимо и достаточно,

чтобы оператор V был замкнут.

При помощи преобразования Кели замкнутого эрмитова оператора A легко установить общую форму его уплотняющих расширений \tilde{A} . Для того чтобы изометрическому расширению \tilde{U}_{λ} преобразования Кели U^{λ} замкнутого эрмитова оператора A соответствовало по формуле

$$\widetilde{A} = (\lambda \widetilde{U}_{\lambda} - \overline{\lambda} E) (\widetilde{U}_{\lambda} - E)^{-1}$$

уплотняющее расширение \tilde{A} оператора A, необходимо и достаточно, чтобы

$$\mathfrak{D}(\tilde{U}_{\lambda})\cap\mathfrak{M}_{\lambda}=0$$

и чтобы оператор W, определенный на элементах f вида

$$f = \varphi + \psi, \quad \varphi \in \mathfrak{D}(\overline{U}_{\lambda}), \quad \psi \in \mathfrak{M}_{\lambda}$$

равенством

$$W(\varphi+\psi)=\tilde{U}_{\lambda}\varphi+V\psi$$

был изометричен. Или, иначе говоря, оператор \widetilde{A} будет уплотняющим расширением замкнутого эрмитова оператора A, если он определен на элементах f вида

$$f \! = \! g \! + \! \varphi - \! \overline{V} P_{\overline{\mathfrak{M}}_{\lambda}} \varphi - U P_{\mathfrak{N}_{\lambda}'} \varphi$$

равенством

$$\tilde{A}f = Ag + \bar{\lambda}g - \lambda (\bar{V}P_{\overline{\mathfrak{M}}_{\lambda}}\varphi + UP_{\mathfrak{N}'_{\lambda}}\varphi),$$

где $g\in\mathfrak{D}(A)$, ϕ — элемент из некоторого линейного подмножества \mathfrak{U} дефектного подпространства \mathfrak{N}_λ такого, что $\mathfrak{U}\cap\mathfrak{M}_\lambda=0$, а U — изометрический оператор, определенный на $P_{\mathfrak{N}_\lambda'}\mathfrak{U}$ с множеством значений

в полудефектном подпространстве $\mathfrak{N}_{\overline{\lambda}}$.

5. Уплотняющие расширения—это частный вид расширений с заданным подпространством, в которое должна быть включена область определения расширенного оператора. Имеет место следующее предложение, которое полезно при рассмотрении расширений эрмитовых операторов, не допускающих замыкания:

 $\hat{\mathbf{T}}$ еорема 5. Пусть A — замкнутый эрмитов оператор c областью определения $\mathfrak{D}(A)$. Пусть \mathfrak{D} — подпространство, содержа-

щее $\mathfrak{D}(A)$.

Tогда существуют такие замкнутые эрмитовы расширения $ar{A}$ оператора A, для которых

$$\mathfrak{D}(\tilde{A}) = \mathfrak{D}.$$

6. В некотором смысле противоположными уплотняющим расширениям оператора A будут самосопряженные расширения второго рода \tilde{A} замкнутого эрмитова оператора A, рассмотренные M. А. Наймарком в (1); M. А. Наймарк называет самосопряженное расширение \tilde{A} замкнутого эрмитова оператора A, действующего в унитарном пространстве \mathfrak{F} , с выходом в расширенное пространство $\mathfrak{F}' \supset \mathfrak{F}$ расширением второго рода, если

$$\mathfrak{D}(\tilde{A}) \cap = \mathfrak{D}(A).$$

M. А. Наймарком было показано существование расширений второго рода у эрмитовых операторов с плотной областью определения. Им были указаны необходимые и достаточные условия для того, чтобы операторы A_1 и U "определяли" (см. (1)) расширения второго рода замкнутого эрмитова оператора A с плотной областью определения.

Из наших рассмотрений (связанных с изучением оператора V) эти факты можно получить и для операторов с неплотной областью определения.

Институт математики Академии Наук УССР Поступило 14 X 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Наймарк, Изв. АН СССР, сер. мат., 4, № 1 (1940). ² М. А. Наймарк, Изв. АН СССР, сер. мат., 4, № 3 (1940). ³ М. Г. Крейн и М. А. Красносельский, Усп. математ. наук, 2, в. 3 (19) (1947).