Influence of preparation redox conditions and composition of Ce-containing silica gel-glass on its absorption spectrum in visible region

G.E. Malashkevich¹, <u>G.I. Semkova¹</u>, A.A. Boiko² and W. Stręk³

¹Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, 70 F.Skaryna Avenue, 220072 Minsk, Belarus, E-mail: malash@imaph.bas-net.by ²Gomel State Technical University, 48 Oktyabrya Avenue, 246746 Gomel, Belarus ³Institute for Low Temperatures and Structure Research, Polish Academy of Sciences,Wroclaw, Poland

A nature of absorption of Ce-containing glasses in visible region of spectrum is discussed till now. In the present paper, we researched the influence of preparation redox conditions and composition of Ce-containing silica glasses obtained by the direct sol-gel method on the absorption. For the glasses, such absorption is displayed by a broad band with a maximum at λ ~500 nm. It is established that the preparation of the glasses in strong oxidative conditions (impregnation of monolithic xerogel with a highly-concentrated solution of CeO₂ in mixture of H₂O:HNO₃:HCl and prolonged vitrification of the xerogel in oxygen to a state of transparent glass) leads to the highest peak intensity (k~10 cm⁻¹) of the broad band. Annealing of the glasses in hydrogen results in attenuation of the band down to its complete disappearance. A co-doping the Ce-containing glasses with Al, La, Nd, Sm, Er, Tm and Yb, is accompanied with attenuation and displacement of the band. Obtained results refute opinion [1] that the absorption band at λ ~500 nm for similar glasses is stipulated by formation of the clusters representing the complex groupings of Ce⁴⁺-O-Ce³⁺.

Reference

1. G.S. Bogdanova, B.F. Dzhurinskii, S.L. Antonova, *Izv. Akad. Nauk SSSR, Ser. Neorg.* Mater. VI, 776 (1970).