ФИЗИЧЕСКАЯ ХИМИЯ

Г. Б. КЛАРК и член-корреспондент АН СССР Г. В. АКИМОВ

многоэлектродные частично заполяризованные системы

ВЛИЯНИЕ ОМИЧЕСКОГО СОПРОТИВЛЕНИЯ НА ПОЛЯРИЗАЦИЮ БИНАРНЫХ ЭЛЕКТРОХИМИЧЕСКИХ СИСТЕМ

В нашем прошлом сообщении (1) был принципиально рассмотрен вопрос о распределении поляризующего тока в ветвях бинарной системы. Далее, мы изучали влияние величины и соотношения омических сопротивлений в ветвях бинарной системы, подвергаемой поляризации от постороннего источника тока. Экспериментальная установка была та же, что и в прошлой работе (1). В табл. 1 приведены экспериментальные результаты опытов, когда $R_1 = R_2 = R_4 = R_5 = 10 \Omega$ и 50 Ω , а на рис. 1 дано графическое построение.

Таблица 1

l — по- р ляризац. ток		Анодн	ая поля;	ризация		Катодная поляризация					
	l _{Cu} mΛ	E _{Cu} mV	I _{Zn} mA	E _{Zn} mV	Е _{общ} mV	¹ Cu mA	E _{Cu} mV	^I Zn mA	E _{Zn} mV	Е _{общ} mV	
По замыкания		+33		-797	-		+33	-	- 807	-	

Экспериментальные результаты по поляризации пары Си — Zn в 1 N NaCl (площадь анода = площади катода = 100 см^в)

$R_1 = R_2 = R_1 = R_5 = 10 \Omega^{**}$

0 1 2 3 4 5 6 7	$\begin{array}{c} -3,0 \\ -3,0 \\ -3,2 \\ -3,1 \\ -3,0 \\ -3,0 \\ -3,1 \\ -2,8 \end{array}$	$\begin{array}{r} -737 \\ -737 \\ -737 \\ -727 \\ -727 \\ -697 \\ -697 \\ -697 \end{array}$	$\begin{array}{c} -2.9 \\ -3.9 \\ -5.1 \\ -6.0 \\ -6.9 \\ -7.9 \\ -9.2 \\ -9.9 \end{array}$	797 797 807 807 816 816 816	$\begin{array}{c} -777\\ -767\\ -767\\ -747\\ -737\\ -737\\ -737\\ -717\\ -717\end{array}$	$ \begin{array}{c} -3,0 \\ -3,3 \\ -3,6 \\ -3,7 \\ -3,7 \\ -4,2 \\ -4,7 \\ -5,2 \end{array} $	-737 -747 -767 -767 -797 -797 -815 -905	$ \begin{array}{r} -3,0 \\ -2,3 \\ -1,6 \\ -1,0 \\ -05 \\ -10 \\ +1,5 \\ -2,0 \\ \end{array} $	-797 -797 -816 -816 -816 -815 -865 -955	$ \begin{array}{r} 777 \\ - 787 \\ - 797 \\ - 816 \\ - 845 \\ - 845 \\ - 955 \\ \end{array} $
--------------------------------------	---	---	---	---	--	---	--	--	--	---

$$R_1 = R_2 = R_4 = R_5 = 50 \Omega$$

 * Значения потенциалов даны по водородной шкале.
 * Внутреннее сопротивление нами не учитывалось; оно не превышало нескольких десятых ома. Сопоставление трех случаев А (1) (рис. 2), В и С (рис. 1) для трех различных значений R омического сопротивления показывает, что чем

больше величина омического сопротивления, тем с большей точностью и более полно можно построить поляризационную диаграмму.

При малом *R* омическом в цепи электродов, т. е. для почти полностью заполяризованной пары, нужно накладывать очень большие силы поляризующего тока *I*_p, чтобы хоть немного отойти от *I*_{max} и построить хотя бы часть поляризационной диаграммы.

Полученные результаты были проверены в ряде других опытов как с данной парой Си — Zn, так и с парой Fe — Zn в том же растворе 1 N NaCl, а также с парами Си — Zn и Fe — Zn в 0,1 N HCl.

До сих пор нами разбирались случаи, когда сопротивление во всех ветвях одинаково.

Рис. 1. Поляризация пары Cu – Zn в 1 N NaCl при $R_{Cu} = R_{Zn} = 50 \ \Omega$ (B) и $R_{Cu} = R_{Zn} = 10 \ \Omega$ (C). Сплошные линии – поляризационные кривые ($P_{Zn} \ u \ P_{Cu}$); пунктирные линии – суммарные поляризационные кривые, вслючающие и омическое падение напряжения (P_{Cu} + R и P_{Zn} +R); прямая $P_R = IR$ – омическое падение напряжения

На рис. 2 дано графическое изображение для той же пары Cu—Zn в 1 N NaCl, когда $R_{Zn}/R_{Cu} = 10 \ \Omega/100 \ \Omega$ (случай A) и $R_{Zn}/R_{Cu} = 100 \ \Omega/100 \ \Omega$ (случай B). Здесь также P_{Cu} и P_{Zn} — кривые анодной и катодной поляризации, P_{Cu+R} и P_{Zn+R} — суммарные кривые, включающие и омическое падение напряжения. Ясно, что при $R_{Zn} = 100 \ \Omega$ сильно изменяется наклон анодной кривой, а при $R_{Cu} = 100 \ \Omega$ сильно изменяется наклон катодной кривой, но так как $R_{Cu} + R_{Zn} = 110 \ \Omega$, то I в обо-их случаях должно быть одинаково и равно 2,6 mA.

Значение $E_{o fut}$ различно для обоих случаев. Когда $R_{Zn} = 100 \Omega$, общий потенциал $E_{o fut}$ близок к значению потенциала заполяризованного катода — 570 mV; когда же $R_{Cu} = 100 \Omega$, общий потенциал близок к E_A^* и равен — 790 mV.

В другой нашей работе (²) нами было выведено уравнение для расчета I_A и I_K в зависимости от силы поляризующего тока I_p для различных омических и поляризационых сопротивленний в цепях электродов:

$$I_{A} = -I_{1} \pm I_{p} \frac{R_{2} + Rp_{2}}{R_{1} + Rp_{1} + R_{2} + Rp_{2}}, \qquad (1)$$

$$I_{K} = +I_{1} \pm I_{p} \frac{R_{1} + Rp_{1}}{R_{1} + Rp_{1} + R_{2} + Rp_{2}},$$
(2)

где I_1 — ток нары до поляризации; I_p — ток поляризации; R_1 и R_2 — омическое сопротивление в цепи анода и катода; Rp_1 и Rp_2 — поля-

Сплошные линин — поляризационные кривые (P_{Cu} и P_{Zn}); пунктирные линии — суммарные поляризационные кривые. включающие и омическое падение напряжения; прямая $P_R = IR$ — омическое падение напряжения

ризационные сопротивления на аноде и катоде. Знак + отвечает катодной поляризации пары; знак - отвечает анодной поляризации пары.

При $R_1 = R_2$ и $Rp_1 = 0$ уравнения принимают вид:

$$I_A = -I_1 \pm I_p \frac{R_1 + Rp_2}{2R_1 + Rp_2}, \qquad (3)$$

$$I_{K} = +I_{1} \pm I_{p} \frac{R_{1}}{2R_{1} + R_{p_{2}}}.$$
(4)

1975

По этим уравнениям мы подсчитали силу тока в цепи анода и катода при анодной и катодной поляризации. В табл. 2 даны только несколько случаев сопоставления результатов расчета с результатами, полученными из графических построений.

Таблица 2

I _p mA	<i>Rp</i> 3 для Си, 2	$R_1 = R_3,$	<i>I</i> 1, mA	Анодная поляризация				Катодная поляризация			
				IZn, mA		I _{Cu} , mA		IZn, mA		I _{Cu} , mA	
				расч.	графич.	расч.	графич.	расч.	графич.	расч.	графич.
$\frac{1}{2}$	170 360 170	50 50 500	2,4 2,4 0,8	-3,2 -4,2 -1,37	$-3,3 \\ -4,1 \\ -1,30$	$^{+2,2}_{+2,2}_{+0,38}$	$^{+2,2}_{+2,1}_{+0,34}$	-1,6 -0,6 -0,23	-1,6 -0,6 -0,14	$^{+2,6}_{-2,6}_{-1,22}$	+2,55 +2,7 +1,1

Сравнение значений, полученных графически, срассчитанными по уравнениям для пары Си — Zn в 1 N NaCl

В нашем случае $R_1 = R_2$, Rp_1 для Zn равно 0, а Rp_2 для Cu рассчитано по поляризационной кривой (см. (²), рис. 3).

Таким образом, нам удалось вывести закономерности распределения сил токов в сложной гальванической системе, где и омическое сопротивление и поляризация играют одинаково важную роль. Для любого значения поляризующего тока величина и направление тока в цепи каждого из электродов могут быть найдены как путем графических построений, так и аналитически.

Лаборатория коррозии сплавов Института физической химии Академии Наук СССР

Поступило 29 VII 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. В. Акимови Г. Б. Кларк, ДАН. 58, № 8 (1947). ² Г. В. Акимови Г. Б. Кларк, ДАН, 58, № 5 (1947).