Доклады Академии Наук СССР 1948. Том LX, № 2

ЭКОЛОГИЯ

м. С. ГИЛЯРОВ

ЗНАЧЕНИЕ ПОЧВЫ КАК СРЕДЫ ОБИТАНИЯ В ФИЛОГЕНЕЗЕ НАЗЕМНЫХ ПОЗВОНОЧНЫХ

(Представлено академиком И. И. Шмальгаузеном 13 II 1948)

Трехфазность — основная особенность, определяющая специфику почвы как среды обитания. Промежутки между твердыми частицами ночвы и их агломератами заполнены воздухом и водой, соотношение объема которых меняется в зависимости как от механического состава и сложения почвы, так и от климатических и погодных условий, от рельефа местности и т. д.

Уже при влажности почвы выше максимальной гигроскопичности воздух в ней насыщен водяными парами, что делает минимальной угрозу гибели от высыхания в этой среде, даже в условиях сухих местностей *.

При более высоких степенях увлажнения, при наличии пленочной и капиллярной влаги, вода легко может поступать из почвы через полупроницаемые перегородки. Таким образом, почва может рассматриваться как среда промежуточная по основным экологическим свойствам между водными и наземными обитаниями. В почве возможно воздушное дыхание при минимальной угрозе гибели от высыхания и даже при обеспеченной возможности постоянного поступления контактной влаги в организм.

Поэтому почва представляет ту среду, которая широко используется организмами при переходе от водного образа жизни к наземному в течение эволюции, что легко можно показать для многих групп беспозвоночных $\binom{1}{2}$.

Возникает вопрос, имело ли место использование почвы как промежуточной среды в эволюции позвоночных? Постоянное обитание в почве таких крупных форм, как позвоночные, связано с резкими изменениями организации. Такие случаи служат избитыми примерами узкой специализации (например крот среди млекопитающих, безногие среди амфибий и т. д.), характерной для тупиков эволюции.

Однако значение почвы как среды, в которой организмы, чувствительные к дефициту влаги, могут находить надежную защиту от высыхания, очень велико и в эволюции позвоночных.

Временное, более или менее длительное пребывание на суше водных позвоночных — рыб связано с зарыванием в почву. Так например, вьюн проводит сухой летний период, зарывшись в грунт пересыхающего водоема **.

* Так, на юге степной зоны УССР глубже 10 см воздух в почве всегда насыщен водяными парами (4).

^{**} Следует помнить, что в случае затопляемых участков суши и пересыхающих водоемов различия между дном и почвой становятся условными. Одна и та же площадь в зависимости от сезона и погоды меняет свой характер, становясь то наземным, то водным обитанием.

Известная лабиринтовая рыба Anabas scandens, имеющая модифицированные приспособительно к длительному пребыванию вне воды жаберные полости, может переползать в мокрой траве на большие расстояния из водоема в водоем, закапываясь при неблагоприятных условиях в землю, в которой очень длительный период сохраняет жизнеспособность. За частую встречаемость в почве при раскопках анабас получил свое название "земляная" рыба ("underground fish").

Зарывшись в высыхающий ил или в землю, проводят сухой период и двудышащие. Необходимость экономии расхода влаги во время таких детовок у *Dipnoi* приводит к прекращению выделительных про-

цессов и накоплению мочевины в их теле (6).

Для земноводных, уходящих на длительный срок и на более или менее значительные расстояния от водоемов, характерна тесная связь с почвой. Зарываются в землю после нереста и зимуют в ней тритоны (Molge cristatus), в земле проводят сухой период года жабы (Pelobates). Некоторые Urodela откладывают в почву свои яйца (цейлонские Ichtyophis, Amphiuma).

Освободившаяся от связи с водой (как во взрослом состоянии, так и в стадии яйца) аберрантная группа амфибий — гимнофионы (Apoda) тесно связана с почвой на протяжении всего онтогенеза (Hypogeophis).

У рептилий, эмбриональное развитие которых происходит вне воды и приспособлено к этим условиям (зародышевые оболочки), развитие

яиц протекает именно в почве *.

По признаку зависимости развития и водного режима эмбриона яйцекладущих животных от поступления воды из окружающей среды принято различать яйца клейдоичные, содержащие все (кроме кислорода) необходимые для развития вещеєтва, включая и воду, и неклейдоичные, черпающие воду (а у многих морских беспозвоночных и соли) из внешней среды.

Неклейдоический тип характерен для яиц, развивающихся в воде, а

клейдоичный — для развивающихся на суще (10).

Яйца всех амфибий, в том числе и развивающихся в почве, неклей-

лоичны.

Среди рептилий яйца гаттерий, Squamata и ряда черепах также неклейдоичны и увеличиваются в весе за время инкубации за счет абсорбируемой из почвы воды (5 , $^{7-9}$). Для развития таких яиц требуется определенная влажность почвы, во всяком случае превышающая "мертвый запас" в ней воды,—влажность, обеспечивающая постоянный приток воды в яйцо извне и, конечно, исключающая высыхание.

U, наконец, у некоторых черепах (например у пустынной Testudo horsfieldi) и у крокодилов ($Alligator\ sinensis\ (^5)$) яйца, хотя и развиваются в почве, клейдоичны (во всяком случае потенциально) и спо-

собны к развитию без поступления воды извне.

У высших Sauropsida — у птиц — яйца типично клейдоичные, не требующие для своего развития поступления воды извне, защищенные от высыхания скорлупой и оболочками. Яйца птиц могут развиваться в условиях дефицита влаги (открыто) **.

Таким образом, для развития яиц в филогенезе позвоночных явственно намечается смена сред, в которых протекает инкубация: вода \rightarrow почва \rightarrow воздух, причем почва представляет собой промежуточную среду, в которой могут развиваться и неклейдоичные яйца.

Эволюция яиц позвоночных в направлении освобождения от зависимости от поступления влаги извне осуществлялась при откладке яиц

^{*} Включая подстилку (A_0) и сходные по физическим свойствам субстраты. ** Развитие яиц ряда Ratitae и Galliformes в почве, подстилке и сходных субстратах расценивается как вторичное явление (3).

в почву, при последовательном завоевании все более и более сухих местообитаний, при переходе от откладки яиц в местах с влажной почвой в места с почвой, влажность которой не превышает (в период инкубации) мертвого запаса.

Переход к развитию вне почвы или в воздушно-сухой почве связан с развитием белковых оболочек яйца, основное значение кото-

рых — снабжение зародыша водой.

Параллельно с освобождением яйца от зависимости от поступления воды извне и с развитием его устойчивости к высыханию в условиях дефицита влаги меняется и энергетическая база в яйце. Если у амфибий за время эмбрионального развития сжигается около $25^{0}/_{0}$ белка, то у Sauropsida потребляется лишь $3^{0}/_{0}$. В энергетическом балансе развивающихся яиц амфибий белковый метаболизм составляет $71^{0}/_{0}$, а жировой $20^{0}/_{0}$, тогда как у высших Sauropsida у птиц — лишь $6^{0}/_{0}$ энергии получается за счет белков и $80^{0}/_{0}$ за счет жира (5,10).

Неклейдоические яйца черепахи *Chelydra serpentina* по энергетическому балансу приближаются к амфибийным: на окисление жиров у них затрачивается в 4 раза меньше кислорода, чем на окис-

ление белковых веществ (9).

А. М. Сергеев (5) считал, что преимущественно жировой метаболизм в яйцах Sauropsida, при котором окончательными продуктами окисления являются углекислота и вода, следует рассматривать как адаптацию к условиям затрудненного выведения продуктов белкового обмена, определяемого наземным (вневодным) развитием яиц.

Однако задача обезвреживания продуктов белкового распада решается у наземных позвоночных путем приобретения урикотелического обмена с синтезом слабо диффундирующей мочевой кислоты (вместо характерной для водных позвоночных мочевины), как это имеет место и в случаях затрудненного выведения экскретов у беспозвоночных (°).

С моей точки зрения, жировой метаболизм в яйцах наземных позвоночных имеет гораздо более существенное значение как приспособление неподвижной стадии к дополнительному получению влаги в

условиях ее дефицита ".

При сжигании жиров выделяется много метаболической воды, используемой организмом в условиях ее недостатка (ср. функциональное значение жировых горбов у верблюдов).

Таблица 1 Смена сред обитания в онтогенезе и филогенезе яйцекладущих позвоночных

Стадия	Рыбы	Амфибии			Рептилии					
		хвостатые	бесхвостые	гимно- фионы		че шуй- чатые	чере-	кроко- дилы	Птицы	
Яйцо	Вода	Вода (Почка)	Вода (Почва)	Почва	Почва	Почва	Почва	Почва	Воздул (Почва	
Взрослые	Вода (Почва)	Вода (Почва) (Воздух)	(Вода) (Почва) (Воздук)	Почва	Воздух	Воздух	Воздух	Воздуж	Воздух	
Тип яйца Неклей дои ческое							K	Клейдоическое		
Основной энергетический материал яйца		Белки ———						и ж	ры	

^{*} Аналогична роль обильного жирового тела в куколках Insecta — Holometa-bola.

В развитии перехода позвоночных от водного образа жизни к наземному мы можем наметить такие же смены среды для наиболее уязвимой с точки зрения угрозы высыхания эмбриональной стадии, как те, которые я выделяю для многих групп беспозвоночных: вода -> -> почва -> воздух.

Схематически последовательность смены сред обитания в филогенезе и онтогенезе позвоночных мы можем себе представить следую-

щим образом (табл. 1).

Выделяя почву в качестве особой среды, мы видим, что и для позвоночных она является промежуточной средой, использованной в

процессе перехода от водного образа жизни к наземному.

Крупные размеры позвоночных не позволяют обитать в почве в течение всего онтогенеза тем формам, которые лишены специальных приспособлений, связанных с условиями передвижения и другими специфическими особенностями этой среды. Однако специализировавшиеся в этом направлении амфибии — гимнофионы, несмотря на крайне несевершенную защищенность от высыхания, оказались полностью освобожденными от непосредственной связи с водой (Hypogeophis).

Лаборатория беспозвоночных Института эволюционной морфологии им. А. Н. Северцова Академии Наук СССР

Поступило 12 II 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. С. Гиляров, Зоол. журн., 23, № 4, 135 (1944). ² М. С. Гиляров, Тезисы конфер. памяти А. Н. Северцова, изд. АН СССР, 1946. ³ Д. Кашкаров и В. Станчинский, Курс биологии позвоночных, М. — Л., 1929. ⁴ А. Ф. Лебедев, Почвенные и грунтовые воды, изд. АН СССР, М.—Л., 1936. ⁵ А. М. Сергеев, Эволюция эмбриональных приспособлений рептилий, М., 1943. ⁶ М. Флоркэн, Биохимическая эволюция, М., 1947. ⁷ В. Сиппіпд h am and А. Р. Нигwity, Ат. Naturalist, 70, 590 (1936). ⁸ В. Сиппіпд h am and Е. Ниепе, ibid 72, 380 (1936). ⁹ W. G. Lynn and Th. v. Brand, Biol. Bull., 88, No. 2, 112 (1945). ¹⁰ J. Need h am, Chem. Embryology, 2, 3, (1931).