ЭЛЕКТРОТЕХНИКА

В. И. ПОПКОВ

О ПОДВИЖНОСТИ ИОНОВ В УСЛОВИЯХ КОРОННОГО РАЗРЯДА

(Представлено академиком Г. М. Кржижановским 25 IV 1947)

Применимость известных табличных подвижностей в условиях коронного разряда в атмосферном воздухе, специфичных в отношении состава газа, высоких напряженностей поля и т. п., не была достаточно исследована. Как уже отмечалось (¹, ²), сличение с опытом теоретических уравнений вольт-амперной зависимости короны приводит к разно-

речивым цифрам, часто намного превосходящим табличные $(k_{-}$ до $25\frac{\text{см}}{\text{V}}$ и выше) Это средние для ревро обдана средство то

2,5 см/см/ч и выше). Это — средние для всего объема разрядного промежутка подвижности, которые зависят к тому же от неподдающейся

определению неточности используемых уравнений.

Исследуя электрическое поле внешней зоны коронирующих проводов, мы имели возможность определить подвижность более точным и непосредственным образом. Экспериментальное исследование поля при схеме коронирующий провод — плоскость производилось методом характеристик зонда (³,⁴), позволяющим при определенных условиях измерить как потенциал пространства Ф, так и произведение kN подвижности k на плотность ионов N. При униполярной короне на одном из электродов поле описывается нижеследующими уравнениями *:

div
$$\overline{E}_2 = \frac{e}{\varepsilon_0} N$$
, (1) $\overline{j} = e\overline{E}_2 kN$, (2) div $\overline{j} = 0$. (3)

Здесь \overline{E}_2 — напряженность поля; \overline{j} — плотность тока; e — элем. заряд. На линии симметрии можно выразить \overline{E}_2 через вектор лапласова поля, \overline{E}_1 — посредством скалярной функции координат $\vartheta = \overline{E}_2/\overline{E}_1$. Тогда из (1), (2) и (3) находим:

$$\overline{E}_{1} \operatorname{grad} \vartheta = \frac{e}{\varepsilon_{0}} N, \tag{4}$$

$$E_1 \operatorname{grad} c_1 = 0, \quad c_1 = \vartheta k N = j/eE_1, \tag{5}$$

где c_1 — константа вдоль силовой линии. Отсюда получаем два уравнения, определяющих k:

$$k_3 = \frac{e(kN)}{\epsilon_0 E_1 | \operatorname{grad} \vartheta|}, \tag{6}$$

$$k_T = \frac{ej_s}{\varepsilon_0 E_1 E_{1S} \vartheta | \operatorname{grad} \vartheta|}.$$
 (7)

1043

^{*} Без учета диффузии нонов, влияние которой в сильном поле короны ничтожно мало.

По (6) k определяется через величину kN, измеряемую зондом; по (7) — через плотность тока, измеряемую у некоронирующего электрода (индекс s).

Картина поля вдоль центральной силовой линии при отрицательной короне показана на рис. 1 и 2*. Графическим дифференцированием экспериментальной кривой Ф были определены E_2 и, соответственно, ϑ и grad ϑ , входящие в (6) и (7). Кривые k_3 и kT, вычисленные по (6) и (7), показывают** более непосредственно изменение $k_$ в функции от координат поля. В удалении от проводов k_- оказывается постоянным и численно близким к табличной подвижности ***, тогда

Рис. 1. Распределение плотности ионов и потенциала поля по центральной силовой линии. Отрицательная корона U = 50, 5 kV, $I = 58.5 \mu A/m$, P = 740 мм; $t^{\circ} = = 21^{\circ}$ С. Влажность 64—70%. — измерено зондом; — — вычислено

Рис. 2. Напряженность поля и подвижность ионов. Отрицательная корона U=50,5 kV, I=58,5 µA/м

как вблизи провода как в приведенной, так и в ряде других серий измерений мы обнаруживаем определенные изменения подвижности. Аналогичные исследования поля положительной короны показывают, что и k_+ непостоянно, хотя характер изменения k_- и k_+ различен. В обоих случаях напряженность поля $\left(E/p \leqslant 3 \frac{V}{_{\rm CM}}/\text{тор}\right)$ значительно меньше критической, когда подвижность становится зависимой от E/p. Обнаруженные нами изменения объясняются иными причинами.

Небольшой начальный подъем k_{-} на рис. 2 может быть связан с уменьшающимся влиянием утяжеления ионов O_2 во влажном воздухе, как это наблюдалось Зелени (⁵) и другими. Более крутой подъем k_{-} в области x > 17 см находит объяснение в связи с идеями Дж. Томсона (⁶) о влиянии на величину k_{-} примеси электронов, в данном случае проникающих за пределы чехла короны. Написав уравнение результирующей подвижности k при смеси n_1 электронов с подвижностью k_1 и n_2 ионов с подвижностью k_2 и подставляя известное уравнение

^{*} Пунктирные кривые на рис. 1 и 2 вычислены при учете k = 1,8 = const с помощью (5) и решения для функции θ, указанного в сообщении (¹²).

^{**} Небольшое различие между k₃ и k₇ объясняется, повидимому, неточностью измерения j_s методом пробной пластинки.

^{***} После приведения к нормальным условиям.

для n_1 в функции от пройденного пути x (⁸), получим при $n_1 \ll n_2$:

$$\ln \frac{n_1}{n_2} \approx \ln \frac{k - k_2}{k_1} \tag{8}$$

$$\ln \frac{n_1' | n_2'}{n_1' | n_2''} = \frac{1,35 \cdot 10}{k_1^2 E_a} h (x'' - x'), \tag{9}$$

где h—вероятность прилипания электрона. Подстановка в (8) k согласно рис. 2 действительно дает для $\ln n_1/n_2$ ланейную зависимость от пути x, согласующуюся с (9). Такое построенае (k_1 =1000; k_2 =1,8) показано на рис. 3, где прямая I вычислена по данным рас. 2, а прямая II— по данным другой серии экслериментов пра уменьшелной в $1^{1}/_{2}$ раза силе тока короны. Если подставить угловой коэффицаент прямых I и II (0,55 см⁻¹) в (9), то при средлем E_2 =1,7 kV/см получам h=0,72·10⁻⁶, что почти точно совпадает с велачиной h, измеренной Бейли (⁷) в воздухе при E/p=2 V/см/тор.

В свете этих данных находят объяснение те из упомянутых высоких средних k_{-} , которые были определены с помощью достаточно точных уравнений характеристик. Укажем, например, на данные Таунсенда (⁸), определившего при пониженном давлении воздуха $k \gg 3$.

Обнаруженные изм[•]нения k_+ можно объяснить явлением старения ионов, т. е. образованием тяжелых комплексных ионов. В связи с этим k_+ , вычисленные по (6) в различных точках поля и при разной силе тока короны, хорошо обобщаюгся, если расположить их в зависимости от времени движения^{*} ионов от провода до данной точки

Рис. 3. Подвижность положительных ионов во внешней зоне короны. Вычислено по данным измерений поля зондом. Приведено к 760 мм Hg и 20°С

ионов от провода до данной точки поля, как это показано на рис. 4. Максимальная (ок. 1,9) и минимальная (ок. 1,2) величина k_+ рис. 4 согласуются, если учесть соответственный возраст ионов, с данными измерений других авторов, пговодившихся в отличных условиях, например Эриксона (⁹), Тиндаля (¹⁰) и др. Среднее k_+ при больших временах оказывается также близким к известному табличному значению $k_+=1,4$. По установившемуся взгляду изменение k_+ принимается как результат трансформации от состояния молекулярного иона ($k_{+\max}$) к комплексному ($k_{+\min}$) в связи с п илипанием молекул озона или окислов асота. Поэтому можно исходить опять из уравнения для результирующей подвижности при наличии ионов двух состояний, а убыль быстрых ионов представить по закону (10), наблюдавшемуся Валашек (¹¹):

$$dn = -\lambda n dt$$
 (10) $k_{\pm} = 1, 2 \pm 0, 7 e^{-125 t}$ (11)

$$\simeq \frac{H^{2}\ln\left(2H/a\right)}{k_{+}V}\int_{2K\varphi}^{\infty}\frac{S}{\vartheta}\,d2K\varphi.$$

7 ДАН СССР, т. LVIII, № 6

1045

где t — возраст ионов. Отсюда при указанных выше k_{max} и k_{min} получим уравнение (11) для результирующего k_+ . При подобранном $\lambda = 125$ сек.⁻¹ уравнение (11), как показывает кривая на рис. 4, неплохо соответствует средним злачениям измеренных подвижностей во всем интервале t. Более высокое λ , чем в опытах Валашек, вполне согласуется с опытами Тиндаля (¹⁰), наблюдавшего увеличение скорости трансформации при наличии в воздухе озона, что как раз имеет место в условлях короны.

Резюмируя, мы приходим к нижеследующим выводам. При расчетах коронного разряда должно учитываться непостоянство как k_+ , так и k_- . Этот учет особенно вакен при моделировании явления, малых межэлектродных расстояниях и интенсивной короне. При боль-

Рис. 4

Точки	Область измерения	Напряже- ние, kV	Ток короны, µА/м	Давление, мм Hg	T-pa, °C	Влаж- ность, %
1 2 3 4 5 6	Центральная силовая ли- ния Эквипотенциальная по-	45 45 45 45 50,5	27,5 27,5 25 32,5 49,5	732.5 732,5 747 731,6 731,6 736,5 746	15, 8 18, 8 14, 5 18 20, 2 - 22, 4 22	47-58 52 48 56 64 70
	верхность x = 5 см	45	25,5	746	17,1	58

ших межэлектродных расстояниях, например стационарная корона на ланиях передачи, можно принимать среднае постоянные k_+ и k_- равными подвижностям так называемых "нормальных ионов".

Энергетический институт им. Г. М. Кржижановского Академии Наук СССР

Поступило 25 IV 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Жебровский и В. Попков, Электричество, № 20, 47 (1937). ² Н. Каппов. Изв. АН СССР, ОТН, 8, № 5, 280 (1944). ³ Y. Satoh, Mem. Ryejun Coll. Eng., 313, 205 (1932). ⁴ В. Попков. Электричество, № 7, 65 (1938). ⁵ J. 7 elen y, Phys. Rev., 38, 969 (1931). ⁶ J. Thomson, Conduction of El. through Gase, I, Cambridge, 1928. ⁷ V. Bailey, Phil. Mag., 22, 825 (1925). ⁸ J. Townsend, ibid., 28, No. 163, 83 (1914). ⁶ H. Erikson, Phys. Rev., 24, 502 (1924). ¹⁰ A. Tyndall, Proc. Roy. Soc., A, 121, 172, 185 (1938). ¹¹ L. Valasek. Phys. Rev., 29, 542 (1927). ¹² В. И. Попков, ДАН, 58, № 5 (1947).

85