Доклады Академии Наук СССР 1948. Том ЬХ, № 2

ТЕХНИЧЕСКАЯ ФИЗИКА

м. в. якутович и ф. п. Рыбалко

О РАСПРЕДЕЛЕНИИ ДЕФОРМАЦИИ ПО ДЛИНЕ ОБРАЗЦА ПРИ КРУЧЕНИИ

(Представлено академиком И. П. Бардиным 12 II 1943)

В тех случаях, когда методом растяжения или сжатия нельзя получить достаточно полных данных о поведении материала под нагрузкой, рядом авторов (1) предлагается применять метод кручения. К таким случаям в первую очередь относится определение пластичности высокопрочных сталей (2).

Обычно считают, что при кручении деформация распределяется равномерно по всей длине цилиндрического образца, вплоть до разрушения.

Однако между характеристиками пластичности, определяемыми по методу растяжения и кручения, существует определенное нессответствие, удовлетворительного объяснения которому до сих пор не найдено.

Экспериментально установлено, что рассчитанный из опытов растяжения максимальный сдвиг $g_{\mathbf{k}}$ почти всегда больше максимального сдвига $g_{\mathbf{k}}$, определяемого при кручении, в то время как благодаря образованию шейки это соотношение скорее должно быть обратным.

Из данных, приведенных в работе Я. Б. Фридмана и Т. А. Володиной (2) для стали "хромансиль", получается, что для некоторых температур отпуска $g_{\mathbf{p}}$ в три раза превосходит значения $g_{\mathbf{k}}$. Авторы высказывают неподтвержденное экспериментом предположение, что эту разницу можно объяснить образованием при растяжении текстуры деформации, отличной от текстуры, образующейся при кручении.

Установленное различие в пластичности находит простое объяснение, если деформация при кручении распределяется неравномерно по длине образца.

Проведенные нами опыты по деформации кручением цилиндрических образцов показали, что для некоторых материалов и их состояний наблюдается локализация деформации в зоне, прилегающей к поверхности разрушения.

На рис. 1 представлена кривая распределения сдвига по длине образца, полученная из опытов, проведенных на стали марки 45-ХНМФА, закаленной с температуры 880° С и отпущенной при 460°.

Из рисунка ясно видно, что среднее значение сдвига (пунктирная линия), полученное без учета локализации, в 7 раз меньше максимального значения сдвига, определенного в области разрушения.

На рис. 2 представлена аналогичная кривая для гораздо более пластичного материала — латуни 70-30. В этом случае максимальное значение сдвига в месте разрушения превышает среднее значение в в 1,7 раза.

3 =

Постоянство диаметра по длине образцов в обоих случаях было

обеспечено с точностью до $0.2^{0}/_{0}$.

Исходя из полученных результатов, можно предполагать, что максимальный сдвиг $g_{\mathbf{k}}$, определяемый без учета локализации деформации, является средним сдвигом при кручении, в то время как при растяжении определяется сдвиг, характеризующий максимальную деформацию в шейке.

Повидимому, существующее неравенство $g_{\mathbf{p}} > g_{\mathbf{k}}$ является характеристикой способности материала к локализации деформации в зоне

разрушения при испытании кручением.

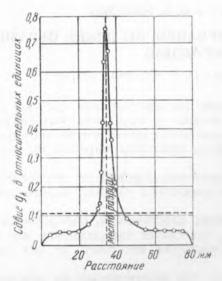


Рис. 1. Кривая распределения сдвига при кручении (g_k) по длине образца. Сталь марки 45-ХНМФА

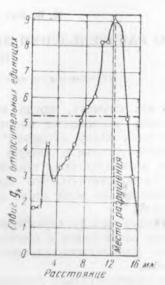


Рис. 2. Кривая распределения сдвига при кручении $(g_{\mathbf{k}})$ по длине образца для латуни

Локальная деформация устойчива в том случае, когда производная от обобщенной деформирующей силы по обобщенной деформации имеет отрицательный знак ».

При растяжении этог момент наступает после перехода за максимум растягивающего усилия. Основной причиной спадания силы в этом случае считается уменьшение поперечного сечения образца при

пастяжении

При испытании же цилиндрического образца кручением поперечное сечение его не изменяется. В этом случае крутящий момент может уменьшиться с увеличением угла закручивания по причине разрыхления материала при его пластическом деформировании, или в случае очень сильной зависимости деформирующего напряжения от температуры (3), а также при прохождении некоторых фазовых превращений, стимулирующихся пластической деформацией.

Представленные на рис. 1 и 2 диаграммы огносятся к материалам и условиям опыта, когда причиной устойчивости локальной пластической деформации могла быть только первая из вышеперечисленных.

^{*} Это положение справедливо для деформирования при низких температурах, когда можно пренебречь зависимостью деформирующего напряжения от скорости деформации и когда при деформации в материале образца не происходит фазовых превращений.

Наблюденная нами неравномерность распределения деформации по длине образца при кручении показывает, что данные о пластичности металлов, полученные из результатов испытания кручением, должны быть пересмотрены, а в дальнейшем испытания кручением должны проводиться с учетом возможности возникновения локализации деформации в зоне разрушения.

Институт физики металлов Уральского филиала Академии Наук СССР Свердловск Поступило 9 II 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Н. Давиденков, Metals Progress, 30, 55 (1936); Г. А. Смирнов-Аляев, Сб. Экспериментальные методы определения напряжений и деформаций в упругой и пластической зонах, стр. 298, 1935; Я. Б. Фридман, Механические свойства металлов, 1946; ДАН, 55, № 9 (1947). ² Я. Б. Фридман и Т. А. Володина, ДАН, 48, № 8 (1945); Зав. лабор., 13, № 9-10 (1946). ³ К. Zener и. Ноllomon, J. Appl. Phys., 15, 22 (1944).