SOL-GEL PREPARATION AND SPECTRAL-FLUORESCENT PROPERTIES OF DOPED ERBIUM SBS GLASSES FOR OPTOELECTRONICS

V.E. Gaishun, E.N. Poddenezhny^{*}, A.A. Boiko^{*}, V.V. Syt'ko, L.V. Sudnik^{**} and W.Stręk^{***}

F. Skorina Gomel State University, Gomel, Belarus, E-mail: vgaishun@gsu.unibel.by *P.O. Sykhoi Gomel State Technical University, Gomel, Belarus, podd@gsu.unibel.by *Institute of powder metallurgy NASB, Minsk, Belarus ***Institute for Low Temperature and Structure Research PAS, Wroclaw, Poland

At present time the optoelectronics is a one of major branches of science and technique. The progress of an optoelectronics is essentially connected with advance of functional material science. Therefore the sol-gel synthesis of SBS glasses, doped Er^{3+} -ions is represented actual direction for investigations.

The sodium-boron-silicate glasses (SBS) doped with Er^{3+} -ions were synthesized by indirect sol-gel method. The procedure involves the following stages: the preparation of initial mixture components (H₂BO₃, NaNO₃, aerosil type A-175, ultra-sonic dispergation, gel formation by addition NH₄F solution up to pH~2, aging and drying in air at 60^oC during 2÷3 days. Then the drained gel powder was loaded into corundum crucible and sintered at the temperature 1200^oC for 1÷1.5 hour in the muffle furnace. The salts of doping erbium were introduced at the liquid sol stage and their concentration was composed to 0.3÷0.5 mass %.

We have investigated the spectroscopic properties of obtained materials. There are 10 bands in absorption spectrum of synthesized glasses, corresponding to the electron transitions from ground state ${}^{4}I_{15/2}$ to exited states ${}^{4}I_{13/2}$, ${}^{4}I_{11/2}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$, ${}^{2}H_{11/2}$, ${}^{4}F_{7/2}$, ${}^{4}F_{5/2}$, ${}^{2}H_{9/2}$, ${}^{4}G_{11/2} \times {}^{2}G_{9/2}$. In the fluorescence spectra at nonselective (xenon lamp + light filter SZS22) excitation the intensive band of resonance ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition with maximum at λ =1530 nm is observed. It is known that the form of resonance fluorescence band of Er³⁺-ions is more sensitive to glass composition in contrast to corresponding absorption band. In contrast to silica gel-glasses [1] for SBS glass prepared by considered method the half-width of a line of ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition increases to 200÷300 cm⁻¹. At first it is connected with increasing of the relative intensity of radiation, caused by a transitions from upper Stark component of ${}^{4}I_{13/2}$ therm, responsible for high-frequency part of fluorescence band at 300⁰ K.

The sol-gel sodium-boron-silicate glasses doped with erbium are interesting as of medium for planar integral-optical waveguides lasers and amplifiers [2].

References

- Spectroscopic properties of erbium doped silica glasses obtained by sol-gel method / Strek W., Deren P., Maruszewski K., Gaishun V.E. et.al. // J. Alloys and Compounds 275-277.-1998.- P. 420 - 423.
- 2. Digonnet M.J.F. (Ed.) Rare Earth Doped Fiber Lasers and Amplifiers.- New York, 1993.-P.125.