Доклады Академин Наук СССР 1947. Том LVIII. № 7

ГИДРОМЕХАНИКА

н. н. кабачинский

ВОПРОСУ О ВЫЧИСЛЕНИИ ПРОФИЛЯ ВОЛН, ВОЗНИКАЮЩИХ ПРИ ДВИЖЕНИИ КОРАБЛЯ

(Представлено академиком В. Л. Поздюниным 20 VI 1947)

Исходным положением работы является использование права нагать одну на другую волны, вызываемые отдельными элементами ематизированного по J. H. Michell'ю (¹) корабля. Чтобы облегчить числение профиля, достатечно раз и навсегда составить таблицы ункций влияния, зависящих лишь от координат. Наиболее удобной казалась та форма потенциала скоростей, которая получается непоедственно при определении его по методу Л. Н. Сретенского (²). ля наших целей потребовалось внести видоизменения в некоторых талях.

Плоскость координат XOZ совмещаем с диаметральной, XOY невозмущенной поверхностью потоха, набегающего на корабль со коростью с, противоположной положительному направлению оси OX. сь OZ направляем вверх. Выделяем на дизметральной плоскости рямоугольник со сторонами, параллельными осям и равными $d\xi$ и $d\zeta$. бсолютную величину его погружения обозначаем ζ . Совокупность вух участков поверхности корабля, проектирующихся на этот прямогольник, и будет тем волнообразующим элементом, профиль волны оторого требуется вычислить.

В потенциале скоростей $\Phi(x, y, z)$ выделяем $\varphi(x, y, z)$ — потенциал озмущений:

$$\Phi(x, y, z) = cx + \varphi(x, y, z).$$
⁽¹⁾

В свою очередь, φ разделяем на два слагаемые: ψ — потенциал озмущения, соответствующего предельному случаю бесконечно больной силы тяготения, и ω — дополнение к ψ до φ при конечном g. раничное условие для потенциала возмущения φ :

$$\left[\frac{\partial \varphi}{\partial z}\right]_{z=0} = -\frac{1}{g} \left[c^2 \frac{\partial^2 \varphi}{\partial x^2} - \mu c^2 \frac{\partial \varphi}{\partial x} \right]_{z=0}, \qquad (2)$$

где μ — коэффициент диссипативных сил Rayleigh, в случае $g \rightarrow \infty$ переходит в граничное условие для ψ :

$$\left[\frac{\partial \Psi}{\partial z}\right]_{z=0} = 0.$$
 (3)

Следовательно, при наличии в потоке особенности для построения ψ надо добавить отражение этой особенности в плоскости *XOY*. 4 дан ссср. т. LVIII, №7 В нашем случае:

$$\psi = \left[\frac{1}{\sqrt{x^2 + y^2 + (z - \zeta)^2}} + \frac{1}{\sqrt{x^2 + y^2 + (z + \zeta)^2}}\right] d^2 e, \qquad (4)$$

где $d^2e = \frac{c}{2\pi} \tau d\xi d\zeta$ — величина, пропорциональная обильности эквивалентного волнообразующему элементу источника, причем $\tau = \frac{\partial f(x,z)}{\partial x};$

здесь $y = \pm f(x, z)$ — уравнение поверхности корабля.

Пользуясь известными из теории функций Бесселя зависимостями, получаем:

$$\left[-\frac{\partial^2 \psi}{\partial x^2} + \mu \frac{\partial \psi}{\partial x}\right]_{z=0} = \frac{d^2 e}{\pi} \int_0^\infty dk \int_0^\infty (k^2 \cos^2\theta + i\mu k \cos\theta) e^{-k(-\zeta + ix \cos\theta + iy \sin\theta)} d\theta.$$

Отыскивая $\omega(x, y, z)$ в форме:

$$\omega(x, y, z) = \frac{d^2 e}{\pi} \int_{0}^{\infty} dk \int_{-\pi}^{\pi} A(k, \theta) e^{k [(z-\zeta)+ix \cos \theta+iy \sin \theta]} d\theta,$$

используя условие (2) и обозначая $h = c^2/g$, получаем:

$$A(k, \theta) = -1 + \frac{1/h}{-k\cos^2 \theta - \mu i \cos \theta + 1/h}$$

Ограничиваем задачу определением профиля при y=0. Вводя новые переменные: $\alpha = k \cos \theta$, $\gamma = k$, получаем при $\mu \rightarrow 0$ в пределе:

$$\omega = \frac{4d^2 e}{\pi} \left[-\int_0^\infty e^{-\zeta \gamma} d\gamma \int_0^\gamma \frac{\cos x\alpha}{\sqrt{\gamma^2 - \alpha^2}} d\alpha + \frac{1}{h} \int_0^\infty e^{-\zeta \gamma} \gamma d\gamma \int_0^\gamma \frac{\cos x\alpha}{\left(\frac{\gamma}{h} - \alpha^2\right)\sqrt{\gamma^2 - \alpha^2}} d\alpha - \frac{\pi}{2} \int_{1/h}^\infty e^{-\zeta \gamma} \frac{\sin x \sqrt{\gamma/h}}{\sqrt{h\gamma - 1}} d\gamma \right].$$
(5)

В последующем пользуемся относительными размерами: $d\xi_1 = d\xi/h$, $d\zeta_1 = d\zeta/h$, ..., опуская индекс 1 для сокращения письма. Целесообразно рассматривать возвышение $d\eta_{or}$, вызывае мое источником той же плотности по полоске шириной $d\xi$, начинающейся на глубине ζ_0 и простирающейся бесконечно вниз:

$$\frac{d\eta_{\omega\xi}}{\tau d\xi} = \frac{2}{\pi^2} \left(-L + N + \pi M \right), \tag{6}$$

где

$$L = \int_{0}^{\infty} \frac{e^{-\tau_{0}\gamma}}{\gamma} d\gamma \int_{0}^{\gamma} \frac{\alpha \sin x\alpha}{\sqrt{\gamma^{2} - \alpha^{2}}} d\alpha, \qquad (7)$$

$$N = \int_{0}^{\infty} e^{-\tau_{0}\gamma} d\gamma \int_{0}^{\gamma} \frac{\alpha \sin x \alpha}{(\gamma^{2} - \alpha^{2}) V \gamma^{2} - \alpha^{2}} \quad \alpha, \qquad (8)$$

$$M = \int_{1}^{\infty} e^{-\tau_0 \gamma} \frac{\cos x \gamma}{\sqrt{\gamma^2 - 1}} d\gamma.$$
(9)

В выражении $d\eta_{\omega c}$ не учтено влияние ψ . Для возвышения $d\eta_{\psi c}$, претствующего влиянию ψ , имеем:

$$\frac{d\eta_{\psi_{t}}}{\tau d\xi} = \frac{2}{\pi^{2}} \frac{\pi}{2x} \left(1 - \frac{\zeta_{0}}{\sqrt{x^{2} + \zeta_{0}^{2}}} \right).$$
(10)

Для приложений наиболее существенна функция *М*. При $\zeta_0 = 0$ она опорциональна функции Неймана первого порядка:

$$M(0, x) = -\frac{\pi}{2} N_0(x).$$
(11)

Используя соотношение $\partial M/\partial \zeta_0 = \partial^2 M/\partial x^2$ и разлагая $M(\zeta_0, x)$ по спеням ζ_0 при $\zeta_0 = 0$, получаем выражение для вычисления M при статочно малых ζ_0 и больших x:

$$\begin{aligned} \zeta_{0}, x) &= -\frac{\pi}{2} \left\{ N_{0}(x) \left[e^{-\zeta_{0}} + \frac{\zeta_{0}^{2}}{x^{2}} \left(-\frac{3}{2!} + \frac{9}{3!} \zeta_{0} - \frac{18}{4!} \zeta_{0}^{2} + \frac{30}{5!} \zeta_{0}^{0} - \frac{45}{6!} \zeta_{0}^{4} + ... \right) + \right. \\ &+ \frac{\zeta_{0}^{3}}{x^{4}} \left(-\frac{60}{3!} + \frac{345}{4!} \zeta_{0} - \frac{1025}{5!} \zeta_{0}^{2} + \frac{2775}{6!} \zeta_{0}^{3} - ... \right) + \\ &+ \frac{\zeta_{0}^{4}}{x^{6}} \left(-\frac{2520}{4!} + \frac{23940}{5!} \zeta_{0} - ... \right) \right] + \\ &+ \frac{\zeta_{0}}{x} N_{1}(x) \left[e^{-\zeta_{0}} + \frac{\zeta_{0}}{x^{2}} \left(\frac{6}{2!} - \frac{33}{3!} \zeta_{0} + \frac{96}{4!} \zeta_{0}^{2} - \frac{210}{5!} \zeta_{0}^{3} + \frac{390}{6!} \zeta_{0}^{4} - ... \right) + \\ &+ \frac{\zeta_{0}^{2}}{x^{4}} \left(\frac{120}{3!} - \frac{1320}{4!} \zeta_{0} + \frac{6345}{5!} \zeta_{0}^{2} - ... \right) \right] \end{aligned}$$

$$(12)$$

Габлица	1
---------	---

C.o.	0	0,15	0,5	1	2
k 0 1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0,160\\ -0,642\\ -0,810\\ -0,516\\ -0,024\\ 0,396\\ 0,533\\ 0,361\\ 0,008\\ -0,203\\ -0,425\\ -0,293\\ -0,293\end{array}$	0,976 0,416 0,373 0,620 0,434 0,051 0,291 0,416 0,292 0,019 0,232 0,330 0,234	0,5 0,601 0,317 -0,196 -0,455 -0,353 -0,064 0,227 0,341 0,248 0,025 -0,185 -0 271 -0 197	1 0,279 0,162 0,064 0,228 0,220 0,064 0,105 0,188 0,149 0,028 0,097 0,154 0,118	$\begin{array}{c} 2\\ 0,077\\ 0,063\\ -0,011\\ -0,055\\ -0,069\\ -0,025\\ 0,023\\ 0,061\\ 0,047\\ 0,020\\ -0,023\\ -0,048\\ -0,027\end{array}$
13 15 17 19	0,009 0,364 0,010 0,325	-0,013 0,282 0,015 -0,250	-0.018 0,220 0.017 -0,195	-0,017 0,134 0,013 -0,118	-0 014 0 046 0 008 0,044
			1	1	

Значения функции М

6N6AHOTEK a

1303

Пользуясь методом установившейся фазы Кельвина, а также иными путями, легко непосредственно получить для больших х приближенную формулу:

$$M = e^{-t_0} \sqrt{\frac{\pi}{2x}} \cos\left(x + \frac{\pi}{4}\right). \tag{13}$$

Чтобы дать представление о характере функции М, в табл. 1 приведены ее значения, вычисленные нами.

Функция L при $x \rightarrow \infty$ стремится к нулю довольно быстро и притом монотонно. Иной характер имеет функция N. Делая замену переменного $\gamma = \alpha + \beta$, получаем при $x \to \pm \infty$ в пределе:

$$N = \mp \pi M$$
. (14)

При $x \to -\infty$ имеем в пределе для полного возвышения $d\eta_t$, обусловливаемого совместным влиянием ω и ψ:

$$\frac{d\eta_r}{\tau d\xi} = -\frac{4}{\pi} M. \tag{15}$$

Таблица 2

Для характеристики функций L и N в табл. 2 приведены вычисленные нами значения этих функций для некоторых частных случаев.

	эначения	функ	функции лил			
t		π/4	π/2	R		
$\zeta_0 = 0$ $\zeta_0 = 0, 5$	L N L N	2,05 0,74 0,72 0,10	1,07 3,01 0,74 1,48	0,61 2,16 0,46 1,54		

Если целью вычислений является определение положения поперечных волн, то вполне достаточна приближенная зависимость (15). Сопоставления вычисленных таким образом профилей с фотографированными дали удовлетворительное в качественном отношении совпадение.

> Поступило 20 VI 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. H. Michell, Phil. Mag., 45, 5, 106 (1898). ² Л. Н. Сретенский, Труды ЦАГИ, в. 319 (1937).