MATEMATHKA

м. с. лившиц

К ТЕОРИИ ЭЛЕМЕНТАРНЫХ ДЕЛИТЕЛЕЙ НЕЭРМИТОВЫХ ОПЕРАТОРОВ

(Представлено академиком А. Н. Колмогоровым 4 II 1948)

1. В теории элементарных делителей для конечных матриц полностью выясняется структура системы инвариантных подпространств. В бесконечномерных пространствах аналогичная задача решена для армитовых операторов.

Однако об инвариантных подпространствах неэрмитовых операторов известно очень мало. Даже в простейшем случае вполне непрерывного оператора ничего не известно о его бесконечномерных инвариантных подпространствах. Отсутствуют также критерии полноты

системы конечномерных инвариантных подпространств.

Как известно, линейный ограниченный оператор A называется эрмитовым, если $A = A^*$, где A^* — сопряженный оператор. Естественно начинать изучение инвариантных подпространств неэрмитовых операторов с того случая, когда разность между оператором и его сопряженным является конечномерным оператором, т. е. оператором, отображающим все гильбертово пространство в его конечномерную часть. Такой оператор мы называем квази-эрмитовым. Однако и в этом случае исследование инвариантных подпространств сопряжено с большими трудностями.

Выделим из спектра оператора все собственные числа λ_k (k=1,2,...). Тогда, как известно, существуют максимальные взаимно простые инвариантные подпространства H_k (k=1,2,...), в которых спектр

оператора совпадает с λ_k (k = 1, 2, ...).

В соответствии с этим можно поставить следующие вопросы:

I. Каковы необходимые и достаточные условия того, чтобы линейная замкнутая оболочка пространств H_k ($k=1,2,\ldots$) совпадала со всем пространством H (условия полноты)?

II. Пусть \tilde{H} — линейная замкнутая оболочка пространств H_k ($k=1,2,\ldots$). Существует ли инвариантное подпространство, которое

в сумме с \hat{H} дает все пространство H?

III. Каковы инвариантные подпространства оператора, который не

имеет ни одного собственного числа?

2. С помощью преобразования Кэли (2) вопрос об отыскании инвариантных подпространств квази-эрмитова оператора сводится к аналогичному вопросу для квази-унитарного оператора (3). Квази-унитарный оператор T называется нерастягивающим, если $(Tf, Tf) \leqslant (f, f)$ $(f \in H)$.

Нерастягивающий оператор называется простым, если он не является унитарным ни на каком подпространстве. Существенную 2 дан, т. 60, № 1

роль для отыскания инвариантных подпространств нерастягивающего оператора играет детерминант его характеристической матрицы— функции $\Delta(\zeta)$ ($|\zeta| < 1$) (3). Функцию $\Delta(\zeta)$ ($|\zeta| < 1$) мы будем называть главным инвариантом оператора T. Можно доказать, что $\Delta(\zeta)$ — регулярная функция от ζ ($|\zeta| < 1$), отображающая единичный круг на свою часть.

Теорема. Если нерастягивающий оператор Т имеет инвариантное подпространство H_1 , то главный инвариант $\Delta_1(\zeta)$ в пространстве H_1 является делителем * главного инварианта $\Delta(\zeta)$.

В следующей теореме содержится решение проблем I и II для

нерастягивающего оператора.

Теорема. Пусть Т— нерастягивающий оператор. Тогда пространство Н, в котором определен оператор Т, можно представить в виде

$$H = H^0 \oplus \overline{(H^{(1)} + H^{(2)})},$$

где $H^{(0)},\;H^{(1)},\;H^{(2)}$ — взаимно простые инвариантные пространства, характеризующиеся следующим образом:

1) в пространстве Н(б) оператор Т унитарен;

 $H^{(1)}$ пространство $H^{(1)}$ является линейно замкнутой оболочкой

конечномерных инвариантных подпространств;

3) в Н(2) не существует конечномерных инвариантных подпространств.

Если

$$\Delta \zeta = \Delta_1(\zeta) \Delta_2(\zeta),$$

$$\begin{split} \Delta_1(\zeta) = & \prod_{k=1}^{\infty} \left(\frac{\zeta_k - \zeta}{1 - \zeta \overline{\zeta}_k} \frac{|\zeta_k|}{\zeta_k} \right) p^k \quad (|\zeta_k| < 1, \ k = 1, 2, \ldots), \\ \Delta_2(\zeta) = & \exp \int_0^{2\pi} \frac{e^{i\alpha} + \zeta}{e^{i\alpha} - \zeta} d\sigma(\alpha) \end{split}$$

- известное представление аналитической функции $\Delta(\zeta)$ ($|\zeta| < 1$), то $\Delta_1(\zeta)$, $\Delta_2(\zeta)$ — главные инварианты оператора T в подпространствах Н(1), Н(2) соответственно.

Если весь спектр нерастягивающего оператора T сводится к одной

точке
$$\zeta_0=1$$
, то главный инвариант $\Delta(\zeta)=e^{a^{\zeta+1\over \zeta-1}}$ $(a>0).$

Можно показать, что каждому делителю $e^{b\zeta-1}$ (0 < b < a) функции $\Delta(\zeta)$ отвечает инвариантное подпространство оператора T.

3. Пусть B — вполне непрерывный оператор. Представим оператор B в виде суммы "вещественной" и "чисто мнимой" частей:

$$B = A_1 + iA_2,$$

где A_1 и A_2 — эрмитовы операторы.

Теорема. Если ${\rm Im}\ B=A_2$ — конечномерный, ненегативный оператор, то пространство H, в котором определен оператор B,

^{*} Т. е. отношение $\Delta (\zeta)/\Delta_1(\zeta)$ ($|\zeta|<1$) — регулярная функция, отображающая единичный круг на свою часть. 18

можно представить в виде замыкания суммы двух взаимно простых инвариантных подпространств:

$$H = \overline{H_1 + H_2}.$$

Подпространства H_1 и H_2 характеризуются следующим обра-30M:

1) пространство H_1 является линейной замкнутой оболочкой

конечномерных инвариантных подпространств;

2) в H_2 нет конечномерных инвариантных подпространств. Вместо них в H_2 существует континуум инвариантных подпространств E_t (0 \leq t \leq 1), обладающих свойствами:

$$\alpha) E_{t''} \supset E_{t'} npu t'' > t';$$

$$(\beta) E_{t-0} = E_{t+0} = E_t;$$

$$\gamma$$
) $E_0 = (0)$, $E_1 = H_2$.

Каждый из двух крайних случаев, указанных в теореме, действительно осуществляется.

Пример. Пусть $\varphi_k(x)$ $(k=1,\,2,\ldots,\,m)$ — система линейно независимых непрерывных функций. Рассмотрим интегральный оператор

$$Bf = \int_{0}^{1} K(x,s) f(s) ds,$$

где K(x,s) $(0 \leqslant x \leqslant 1, 0 \leqslant s \leqslant 1)$ — ядро вида

$$K(x,s) = \begin{cases} i \sum_{k=1}^{m} \varphi_{k}(x) \overline{\varphi_{k}(s)}, & s < x, \\ 0 & s \ge x. \end{cases}$$

Очевидно, $\frac{K-K^*}{2\,i} = \frac{1}{2} \sum_{k=1}^m \varphi_k(x) \, \overline{\varphi_k(s)}$ является конечномерным ненегативным ядром. Оператор B не имеет ни одного конечномерного инвариантного подпространства.

Но оператор B имеет континуум бесконечномерных инвариантных подпространств E_t (0 < t < 1). E_t состоит из всех функций f(x)

 $(f(x) \in L_2)$, аннулирующихся на интервале (0, t).

Применяя условия полноты, дающие решение проблемы I, можно установить следующую теорему:

Теорема. Пусть $L(y) = \sum_{k=0}^{m} P_{m-k}(x) y^{k} \ (a \leqslant x \leqslant b) - самосопря-$

женное дифференциальное выражение, в котором все коэффициен-

ты непрерывны и $P_0(x) \neq 0$ ($a \leqslant x \leqslant b$). Пусть $u_i(y) = 0$ неособенная система граничных условий такая, что для любой функции y, удовлетворяющей условиям $u_i(y)=0$ (i = 1, 2, ..., m), имеет место неравенство

$$\operatorname{Im} \int_{a}^{b} L(y) \overline{y} \, dx \gg 0. \tag{1}$$

При этих условиях линейная замкнутая оболочка конечномерных инвариантных подпространств дифференциального оператора L(y) при граничных условиях $u_1(y)=0$ $(i=1,2,\ldots,m)$ совпадает со всем пространством $L_2(a,b)$.

Условие (1) существенно. Действительно, если условия $u_i(y) = 0$

являются, например, условиями Коши, т. е.

$$u_1(y) = y^{(i-1)}(a) \ (i = 1, 2, ..., m),$$

то оператор L(y) при этих условиях не имеет ни одного конечно-

мерного инвариантного подпространства.

В заключение отметим, что нам не удалось получить удовлетворительных результатов в том случае, когда "мнимая часть" A_2 в разложении $B=A_1+i\,A_2$ является индефинитным оператором.

Поступило 8 I 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ F. Riesz, Les systèmes d'équations linéaires à une infinité d'inconnues, 1913. ² J. v. Neumann, Math. Ann., **102** (1929). ³ M. C. Лившиц, ДАН, **58**, № 1 (1947).