<u>ГИДРОМЕХАНИКА</u>

А. М. ФАЙНЗИЛЬБЕР

ОБОБЩЕНИЕ ТЕОРИИ "ПУТИ СМЕШЕНИЯ" НА ОБТЕКАНИЕ КРИВОЛИНЕЙНЫХ ПРОФИЛЕЙ

(Представлено академиком А. Н. Колмогоровым 11 III 1947)

1. Уравнения турбулентного пограничного слоя, получаемые из уравнений Рейнольдса (1), суть

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{dp}{dx} + \frac{\partial \tau}{\partial y}.$$
 (1)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$

Прандтль (2) рассмотрел случай обтекания пластины (dp/dx=0) и, считая в первом приближении, что u и v не зависят от x, получил из (1) и (2) $\tau=\tau_0$.

Сопоставление этой формулы с законом теории "пути смешения" Прандтля — Кармана (3)

$$\sqrt{\frac{\tau}{\tau_0}} = x \frac{\left(\frac{\partial u_2}{\partial t}\right)^2}{\frac{\partial^2 u_2}{\partial t^2}},$$
 (3)

где $t=\frac{y}{\delta}$, $u_2=\frac{\overline{u}-u}{v_*}$ (\overline{u} —значение скорости на границе слоя, $v_*=\sqrt{\frac{\tau_0}{\rho}}$ — динамическая скорость, δ — толщина слоя), и дает известный закон Прандтля—Никурадзе

$$u_2 = -\frac{1}{2} \ln t. \tag{3'}$$

Однако попытки непосредственного перемесения этого закона на случай обтекания криволинейных профилей оказались несостоятельными ввиду резкого несоответствия эксперименту.

2. Рассмотрим теперь случай обтекания криволинейных профилей $(dp/dx \neq 0)$ и покажем, что для него может быть получено обобщение изложенной выше теории.

Принимая опять (в качестве первого приближения), что u и v не зависят от x, получаем из (1) и (2) распределение напряжения трения для криволинейного профиля

$$\frac{\tau}{\tau_0} = 1 + b(x)t; \tag{4}$$

здесь $b(x) = \frac{\delta dp/dx}{\tau_0}$ — форм-фактор.

Симметричное крыло Жуковского с относительной толщиной в 15% от хорды

Сечение x = 0.7119 м (x/l = 0.706), $\delta = 0.037$ м

 $\tau_0 = 0,183 \text{ KF/M}^2$, $dp/dx = 36 \text{ KF/M}^2$, u = 26,4 M/cek.

$$v_* = \sqrt{\tau_0/\rho} = 1,14 \text{ м/сек.}, b (x) = \delta \frac{dp}{dx}/\tau_0 = 2,70$$

t 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 y 0 1,37 2,74 4,11 5,48 6,85 8,22 9,59 10,96 42,33 13,70 u по (5) 0 18,2 20,3 21,6 22,6 23,4 24,4 24,8 25,4 25,8 26,4 u по Фейджу . . 0 17,0 19,3 20,7 22,0 23,3 24,2 25,2 25,8 26,0 26,4

Таблица 2

Крыло Геттинген 397

Хорда l=40 см, угол атаки $\alpha=12^{\circ}$, сечение x=27,20 см,

 $\delta = 0,0075 \text{ M}, \tau_0 = 0,3278 \text{ K}\Gamma/\text{M}^2, dp/dx = 288 \text{ K}\Gamma/\text{M}^3, \overline{u} = 37,4 \text{ M/cek.},$

$$v_* = \sqrt{\tau_0/\rho} = 1,64 \text{ m/cek.}, \ b \ (x) = \delta \frac{dp}{dx}/\tau_0 = 6,6$$

t	0 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
y	0 - 0.73	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50
и по (5)	0 23,7	27,7	29,5	31,3	32,7	33,6	34,9	35,7	36,3	37,4
и по Грушвицу	0 20,8	27,4	29,6	31.2	32.7	34.0	35.2	35.9	36.7	37.4

Таблица 3

Симметричное крыло Жуковского с относительной толщиной в 15% от хорды

Сечение x = 0.8135 м (x/l = 0.807), $\delta = 0.0162$ м,

 $\tau_0 = 0,1175 \text{ KT/M}^2$, $dp/dx = 34,25 \text{ KF/M}^2$, u = 24,9 M/ceK.

$$v_* = \sqrt{\frac{dp}{\tau_0/\rho}} = 0.97 \text{ M/CeK.}, \ b \ (x) = \delta \frac{dp}{dx}/\tau_0 = 4.72$$

t 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 y 0 1,62 3,24 4,26 6,48 8,10 9,72 11,34 12,96 14,58 16,20 u по (5) 0 21,4 19,0 20,4 21,3 22,1 22,8 23,4 23,5 24,4 24,9 u по Фейджу . . 0 16,5 18,1 19,3 20,7 22,1 23,0 23,9 24,3 24,7 24,9

Таблица 4

Симметричное крыло Жуковского с относительной толщиной в 15% от хорды

Сечение $x=0,610 \text{ м} (x/l=0,60^{\circ}), \delta=0,01122 \text{ м},$

 $\tau_0 = 0,1735 \text{ Kr/M}^2$, $dp/dx = 32,65 \text{ Kr/M}^2$, u = 27,4 M/ceK.,

$$v_* = V \overline{\tau_0/\rho} = 1,18 \text{ m/ceK}, b(x) = \delta \frac{dp}{dx}/\tau_0 = 2,11$$

ť								0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1.0
ν								0	1,12	2,24	3,36	4,48	5,60	6,72	7,84	8,96	10,08	11,20
U	ПО	(5)					0	18,2	20,4	21,8	22,8	23,7	24,5	25,0	25,6	26,1	27,4
и	по	q) ei	iдi	ж	7		0	18,3	20,4	22,3	23,6	24,4	25,2	25.9	26.5	27.0	27.4

Сопоставляя (4) и (3), находим закон распределения скоростей в виде

 $u_{2}(x,t) = \frac{1}{x} \left[\sqrt{1 + b(x) - i\sqrt{1 + b(x)t} + \ln \frac{\sqrt{1 + b(x) - 1}}{\sqrt{1 + b(x)t} - 1}} \right].$ (5)

Для dp/dx = 0 формула (5) переходит в закон (3'). Поэтому, в соот-

ветствии с опытами Никурадзе, будем брать x = 0,4.

3. Покажем прежде всего, что формула (5) весьма хорошо согласуется с экспериментальным распределением скоростей для крыльев по опытам Фалькнера и Фейджа (4) и Грушвица (5). Об этом свидетельствуют табл. 1-4.

4. Получим теперь, исходя из формулы (5), закон сопротивлений для криволинейного профиля и покажем, что он также хорошо согла-

суется с экспериментами.

Формула (5) на границе ламинарного подслоя дает (мы раскладываем $1+b(x)\frac{\delta_n}{\delta}$ в ряд по степеням $\frac{\delta_n}{\delta}$ и пренебрегаем ввиду малости

 δ_n квадратами и более высокими степенями, а также $\frac{\delta_n}{\delta}$ по сравнению с $\ln \frac{\delta_n}{\delta}$

$$\frac{\overline{u}-u\pi}{v_*} = \frac{1}{\pi} \left\lceil \sqrt{1+b} \overline{(x)} - 1 + \ln \left(\sqrt{1+b} \overline{(x)} - 1 \right) - \ln \frac{b}{2} \frac{(x)}{\delta} - \ln \frac{\delta_n}{\delta} \right\rceil.$$

С другой стороны, в ламинарном подслое, как известно, имеем

$$u_{n} = \frac{\tau_{0}}{\mu} \delta_{n} = \frac{\tau_{0}}{\mu} \frac{\alpha \nu}{v_{*}} = \alpha v_{*}$$

(здесь а — экспериментальная константа).

Сопоставляя полученные формулы, находим, вводя коэффициент сопротивления

$$c_f = \frac{\tau_0}{\rho u^2/2} = \frac{2 \, v_*^2}{\overline{u}^2},$$

закон сопротивления в виде

$$\sqrt{\frac{2}{c_f}} = \alpha + \frac{1}{\alpha} q, \tag{6}$$

где

$$q = V \frac{1+b(x)}{1+b(x)} - 1 + \ln \frac{2(\sqrt{1+b(x)}-1)}{b(x)} - \ln \alpha + 3$$
 (6')

Таблица 💌

Табл. 5 показывает хорошее совпадение полученного нами закона сопротивлений (6) с экспериментами Фалькнера и Фейджа над крыльями Жуковского.

Константы α и \times определились: $\alpha = 10,5$ и $\times = 0,40$.

Весьма существенно, что сопоставление теории с экспериментами дает одинаковые значения для константы х как в законе скоростей, так и в законе сопротивлений.

Поступило 11 III 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

O. Reynolds, Phil. Trans., A, 186 (1895).
L. Prandtl, V. D. I., 77, No. 5 (1933).
Th. v. Karman, Verchandl.
Intern. Kongr. Techn. Mech. (1930).
A. Fage and V. Falkner, ARSR, No. 1315 (1931).
F. Gruschwitz, Ing. Archiv, 2, H. 3 (1931).