ФИЗИОЛОГИЯ

Н. П. ТРЕТЬЯКОВ

СПОСОБНОСТЬ ЭМБРИОНОВ ПТИЦ ПЕРЕНОСИТЬ ДЛИТЕЛЬНЫЕ И ГЛУБОКИЕ ОХЛАЖДЕНИЯ

(Представлено академиком И. И. Шмальга узеном 30 ІІІ (1947)

Способность животных переносить длительные и глубокие охлаждения тела давно привлекает к себе внимание исследователей. С изучением этого вопроса связано не только решение проблемы анабиоза, но и решение практических задач, которые остро встают перед производством, например, перед птицеводством (искусственная инкубация). В литературе имеются данные по влиянию охлаждения на жизнеспособность эмбрионов домашних птиц и результаты инкубации. Авторы этих исследований приходят к выводу, что эмбрионы старших возрастов гибнут при комнатных температурах быстрее, чем эмбрионы меньшего возраста (1-3), и что кратковременные охлаждения инкубированных яиц повышают процент вывода цыплят, утят и индюшат (4). Нами были поставлены опыты по выяснению стойкости эмбрионов различных возрастов к длительным охлаждениям при комнатных температурах 16 и 18° С. Работа была проведена на высококачественных племенных яйцах.

Таблица 1

Ярус	Дни инку- бации	Т-ра на верхнем уровне яйца в °С	Влажность в %	Открытие эаслонок в мм при 20—23° С	Охлаждение	Пово- рот яйца	
IV	1-8		65	1-2	_		
III	9—16	39	55	3—5	5—7 мин. один раз в сут- ки (с 9-го по 16-й день)	12	
II	17—24	39	50	8—10	10-12 мин. 2 раза в сут- ки (с 17-го по 21-й день)		
I (выводной)	25—28	39	65—70	10-12	15 мин. 2 раза в сутки (с 22-го дня до наклева)	12	

Материал. Материалом служили эмбрионы уток пекинской породы и хаки-кемпбелл, в количестве 4800 штук, и эмбрионы кур породы белый леггорн, 1200 штук.

Яйца подбирались 1—3-дневные со дня снесения, одинаковые по форме, размеру и весу. Вес утиных яиц колебался для пекинских уток от 85 до 90 г, для хаки-кемпбелл от 70 до 72 г и куриных яиц от 50 до 51 г.

Серии опытов. Были проведены следующие опыты: 1) охлаждение при температуре $16-18-24^\circ$ С в течение 1 часа; 2) охлаждение при температуре $16-18-24^\circ$ С в течение 24 часов.

Методика. Яйца с утиными эмбрионами на 1-й, 2-й, 10-й, 15-й, 20-й, 25-й и 26-й день развития и с куриными эмбрионами на 1-й, 5-й, 10-й, 15-й и 20-й день развития подвергались охлаждению, соответственно типу опыта (глубина и продолжительность). После охлаждения яйца вновь закладывались в инкубатор. Режим инкубирования яиц в секционном инкубаторе "Птицеводсоюз" представлен в табл. 1.

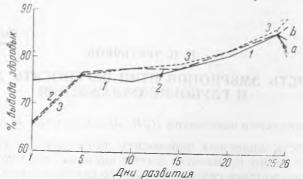


Рис. 1. Стойкость утиных эмбрионов на разных стадиях развития к охлаждению в течение 1 часа: I—при 16° С, 2— при 18° С, 3—при 24° С; a— (26-й день) с наклевом (разорванные пленки), •—(26-й день) писк утенка в яйце (без наклева)

Учитывалось число выведшихся утят и цыплят, их состояние, сроки вывода и его характер, число погибших эмбрионов по стадиям развития, влияние охлаждения на проклюнувшихся и непроклюнувшихся

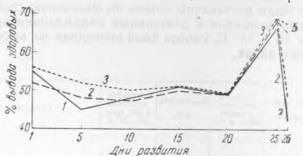


Рис. 2. Стойкость утиных эмбрионов на разных стадиях развития к длительному (24 часа) охлаждению: 1—при 16° С, 2—при 18°С, 3—при 24°С; а— (26-й день) с наклевом (разорванные пленки), ь-писк утенка в яйце (без наклева)

в момент охлаждения утят и цыплят. Процент вывода исчислялся от числа эмбрионов, подвергавшихся охлаждению на той или иной ста-

дии развития.

Результаты опытов. Сравнительный анализ результатов опытов по влиянию часового охлаждения показал, что никакого снижения процента вывода и ухудшения состояния утят не наблюдалось, как это можно видеть на рис. 1.

Результаты опытов по влиянию 24-часового охлаждения по уткам

представлены на рис. 2 и по курам в табл. 2.

В каждой серии под опытом было по 600 яиц.

Как показывают данные, представленные на рис. 2 и в табл. наиболее вредное влияние 24-часовое охлаждение при температуре $16-18^{\circ}$ С оказывает на 5-15-дневные эмбрионы. На более поздних стадиях развития процент гибели был ниже, и здоровых утят и цыплят выводилось больше.

Выводы. 1. Охлаждение в течение часа при температуре 16-18 24° С на любой стадии развития эмбрионов кур и уток не вызывает снижения вывода и ухудшения качества птенцов.

Таблина 2

	На какой день развития произведено охлаждение яип	Продолжительность вывода		нных	при	Вывод		
Серия		массовый на- клев (на ка- кой день)	конец вывода (на какой день)	Неоплодотворенных	 % замерзших пр вымораживании	хивофорго 0/0	% слабых и калек	% задохликов
Охлаждение в течение 24 час. при 18° С	1 5 10 15 20* 20**	20 12 час. 20 12 » 20 10 » 20 12 » 20 21	22 21 22 22 22 22 22	6	14 19 18 17	51 48 49 52 41 64	12 14 15 14 26 16	17 19 18 17 33 20
Охлаждение Гв течение 1 часа при 18° C	1 5 10 15 20* 20**	19 19 19 19 19	20 20 20 20 20 20 21	5 — — 6	5 6 5 4	69 74 72 77 82 87	4 5 6 4 5 3	17 15 17 15 13

^{*} С наклевом (разорванные пленки). ** Без наклева (писк цыпленка в яйце).

2.~24-часовое охлаждение эмбрионов на разных стадиях развития при температуре $16-18-24^{\circ}$ С вызывает наивысший процент гибели в тех случаях, когда охлаждению подвергаются эмбрионы в возрасте 5-15 дней. Эмбрионы на более поздних стадиях развития переносят охлаждение лучше и дают меньший процент гибели. Этот вывод на первый взгляд кажется противоречащим установленной закономерности повышения температурной чувствительности в онтогенезе и филогенезе теплокровных животных (5). Но примененные в опытах температуры охлаждения были близки к 20° С, т. е. к порогу развития для начальных стадий, и намного ниже 34° С — порога развития эмбрионов в последних стадиях развития (6).

Таким образом, до 15-дневного возраста температура 16—18—24° С

оказывает на эмбрионы сравнительно слабое влияние.

Эмбрионы в возрасте более 15 дней находятся при температуре от 16 до $18-24^{\circ}$ С в полуанабиотическом состоянии при почти полном прекращении развития, но с сохранением жизнеспособности. В связи с подавлением развития, неправильных процессов роста и дифференцировки не происходит, и эмбрионы этих возрастов гибнут в меньшем числе, чем более "холодостойкие" эмбрионы меньшего возраста.

3. При охлаждении эмбрионов в выводной период (утиных на 26-й день и куриных на 20-й день) в яйцах, имеющих разрушенные наклевом пленки, эмбрионы оказываются менее стойкими к охлаждениям, чем эмбрионы в яйцах без наклева, т. е. с ненарушенными пленками

и скорлупой.

Поступило 30 III 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Kaufman, Arch. Entwickl., 131, 193 (1934). ² L. Grodzinski, ibid., 129, 502 (1933).³ S. Kaestner, Arch. Anat. u. Physiol., Anat. Abt. (1895). ⁴ Н. П., Третьяков, Тр. Моск. зоотехн. ин-та, 1 (1940). ⁵ А. В. Рюмин, Усп. соврем. биол., 12, № 3 (1940). ⁶ А. В. Рюмин, Сборник научн. студенч. работ МГУ, № 6. Биология, 1939.